Back to Search
Start Over
Hadamard powers of some positive matrices
- Publication Year :
- 2018
- Publisher :
- arXiv, 2018.
-
Abstract
- Positivity properties of the Hadamard powers of the matrix [ 1 + x i x j ] for distinct positive real numbers x 1 , … , x n and the matrix [ | cos ( ( i − j ) π / n ) | ] are studied. In particular, it is shown that the n × n matrix [ ( 1 + x i x j ) r ] is positive semidefinite if and only if r is a nonnegative integer or r > n − 2 , and for every odd integer n ≥ 3 the n × n matrix [ | cos ( ( i − j ) π / n ) | r ] is positive semidefinite if and only if r is a nonnegative even integer or r > n − 3 .
- Subjects :
- Numerical Analysis
Algebra and Number Theory
010102 general mathematics
010103 numerical & computational mathematics
Positive-definite matrix
01 natural sciences
Functional Analysis (math.FA)
Mathematics - Functional Analysis
Combinatorics
Matrix (mathematics)
Integer
Mathematics - Classical Analysis and ODEs
Hadamard transform
Classical Analysis and ODEs (math.CA)
FOS: Mathematics
Discrete Mathematics and Combinatorics
Geometry and Topology
0101 mathematics
Positive real numbers
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....bd6b5f48d1f1eb0b42522cd98964dac4
- Full Text :
- https://doi.org/10.48550/arxiv.1803.06803