Back to Search
Start Over
Investigation of dielectric layers laser ablation mechanism on n-PERT silicon solar cells for (Ni) plating process: Laser impact on surface morphology, composition, electrical properties and metallization quality
- Source :
- Solar Energy Materials and Solar Cells, Solar Energy Materials and Solar Cells, Elsevier, 2019, 202, pp.110149. ⟨10.1016/j.solmat.2019.110149⟩
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- Laser contact opening is a critical step for solar cells manufacturing and needs to be optimized to achieve high efficiencies. In this paper, laser contact opening using a picosecond laser (wavelength 355 nm, pulse duration 10 ps) has been carried out on n-PERT precursors composed of a SiOx/SiOxNy stack on the rear polished side and a SiOxNy layer on the front textured side. By varying peak fluence from 0.130 J/cm2 to 2.159 J/cm2 and spot overlapping, ninety parameters combinations have been tested to open these dielectric layers. Surface morphology characterization, before and after laser ablation, has been realized using Confocal Laser Scanning Microscopy and Scanning Electron Microscopy. Bulk and surface compositions have also been investigated by Energy Dispersive Spectroscopy and X-ray Photoelectron Spectroscopy analysis, respectively. Results have shown the existence of four separated laser impacted areas on the polished side and a related ablation mechanism is suggested. Also, electrical characterization using four probe measurements and calibrated lifetime photoluminescence revealed that electrical properties of the silicon underlying increased when post laser annealing was performed associated with no spot overlapping. Then, nickel electroless deposition has been performed and first characterizations indicate adherence issues and inhomogeneous metallization. Characterization of metallized samples revealed that these observations were closely linked to the non-homogenous surface morphology and composition after laser ablation.
- Subjects :
- Materials science
Silicon
Scanning electron microscope
Energy-dispersive X-ray spectroscopy
chemistry.chemical_element
02 engineering and technology
Dielectric
010402 general chemistry
01 natural sciences
Fluence
law.invention
X-ray photoelectron spectroscopy
law
[CHIM]Chemical Sciences
ComputingMilieux_MISCELLANEOUS
Laser ablation
Renewable Energy, Sustainability and the Environment
business.industry
021001 nanoscience & nanotechnology
Laser
0104 chemical sciences
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
chemistry
Optoelectronics
0210 nano-technology
business
Subjects
Details
- Language :
- English
- ISSN :
- 09270248
- Database :
- OpenAIRE
- Journal :
- Solar Energy Materials and Solar Cells, Solar Energy Materials and Solar Cells, Elsevier, 2019, 202, pp.110149. ⟨10.1016/j.solmat.2019.110149⟩
- Accession number :
- edsair.doi.dedup.....bd237d4e2cb722c17078592b74752b1d
- Full Text :
- https://doi.org/10.1016/j.solmat.2019.110149⟩