Back to Search Start Over

AtMBD9: a protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis

Authors :
Steven J. Rothstein
Yong-Mei Bi
Yuhai Cui
Mingsheng Peng
Source :
The Plant journal : for cell and molecular biology. 46(2)
Publication Year :
2006

Abstract

*Summary The functional characterization of mammalian proteins containing a methyl-CpG-binding domain (MBD) has revealed that MBD proteins can decipher the epigenetic information encoded by DNA methylation, and integrate DNA methylation, modification of chromatin structure and repression of gene expression. The Arabidopsis genome has 13 putative genes encoding MBD proteins, and no specific biological function has been defined for any AtMBD genes. In this study, we identified three T-DNA insertion mutant alleles at the AtMBD9 locus, and found that all of them exhibited obvious developmental abnormalities. First, the atmbd9 mutants flowered significantly earlier than wild-type plants. The expression of FLOWERING LOCUS C (FLC), a major repressor of Arabidopsis flowering, was markedly attenuated by the AtMBD9 mutations. This FLC transcription reduction was associated with a significant decrease in the acetylation level in histone H3 and H4 of FLC chromatin in the atmbd9 mutants. Secondly, the atmbd9 mutants produced more shoot branches by increasing the outgrowth of axillary buds when compared with wild-type plants. The two known major factors controlling the outgrowth of axillary buds in Arabidopsis, auxin and the more axillary growth (MAX) pathway, were found not to be involved in producing this enhanced shoot branching phenotype in atmbd9 mutants, indicating that AtMBD9 may regulate a novel pathway to control shoot branching. This pathway is not related to FLCexpression as over-expression of FLCin atmbd9-2 restored itsflowering time to one similar to that of the wild type, but did not alter the shoot branching phenotype.

Details

ISSN :
09607412
Volume :
46
Issue :
2
Database :
OpenAIRE
Journal :
The Plant journal : for cell and molecular biology
Accession number :
edsair.doi.dedup.....bd07839d2e045187034e4987f09b0420