Back to Search Start Over

Mutations in the tomato gibberellin receptors suppress xylem proliferation and reduce water loss under water-deficit conditions

Authors :
Uria Ramon
Idan Nissan
Natanella Illouz-Eliaz
Ido Nir
Hagai Shohat
David Weiss
Source :
Journal of Experimental Botany
Publication Year :
2020
Publisher :
Oxford University Press (OUP), 2020.

Abstract

Loss of the tomato GID1 gibberellin receptors reduces xylem proliferation and xylem hydraulic conductance. This contributes to the effect of low gibberellin activity on water loss under water-deficit conditions.<br />Low gibberellin (GA) activity in tomato (Solanum lycopersicum) inhibits leaf expansion and reduces stomatal conductance. This leads to lower transpiration and improved water status under transient drought conditions. Tomato has three GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors with overlapping activities and high redundancy. We tested whether mutation in a single GID1 reduces transpiration without affecting growth and productivity. CRISPR-Cas9 gid1 mutants were able to maintain higher leaf water content under water-deficit conditions. Moreover, while gid1a exhibited normal growth, it showed reduced whole-plant transpiration and better recovery from dehydration. Mutation in GID1a inhibited xylem vessel proliferation, which led to lower hydraulic conductance. In stronger GA mutants, we also found reduced xylem vessel expansion. These results suggest that low GA activity affects transpiration by multiple mechanisms: it reduces leaf area, promotes stomatal closure, and reduces xylem proliferation and expansion, and as a result, xylem hydraulic conductance. We further examined if gid1a performs better than the control M82 in the field. Under these conditions, the high redundancy of GID1s was lost and gid1a plants were semi-dwarf, but their productivity was not affected. Although gid1a did not perform better under drought conditions in the field, it exhibited a higher harvest index.

Details

ISSN :
14602431 and 00220957
Volume :
71
Database :
OpenAIRE
Journal :
Journal of Experimental Botany
Accession number :
edsair.doi.dedup.....bcf7bc91461be9e01a0da44cfec6fa2d
Full Text :
https://doi.org/10.1093/jxb/eraa137