Back to Search
Start Over
Next Generation Cuprous Phenanthroline MLCT Photosensitizer Featuring Cyclohexyl Substituents
- Source :
- Inorganic chemistry. 60(12)
- Publication Year :
- 2021
-
Abstract
- A new long-lived, visible-light-absorbing homoleptic Cu(I) metal-to-ligand charge transfer (MLCT) photosensitizer, [Cu(dchtmp)2]PF6 (dchtmp = 2,9-dicyclohexyl-3,4,7,8-tetramethyl-1,10-phenanthroline), has been synthesized, structurally characterized, and evaluated in terms of its molecular photophysics, electrochemistry, and electronic structure. Static and time-resolved transient absorption (TA) and photoluminescence (PL) spectroscopy measured on the title compound in CH2Cl2 (τ = 2.6 μs, ΦPL = 5.5%), CH3CN (τ = 1.5 μs, ΦPL = 2.6%), and THF (τ = 2.0 μs, ΦPL = 3.7%) yielded impressive photophysical metrics even when dissolved in Lewis basic solvents. The combined static spectroscopic data along with ultrafast TA experiments revealed that the pseudo-Jahn-Teller distortion and intersystem crossing dynamics in the MLCT excited state displayed characteristics of being sterically arrested throughout its evolution. Electrochemical and static PL data illustrate that [Cu(dchtmp)2]PF6 is a potent photoreductant (-1.77 V vs Fc+/0 in CH3CN) equal to or greater than all previously investigated homoleptic Cu(I) diimine complexes. Although we successfully prepared the cyclopentyl analog dcptmp (2,9-dicyclopentyl-3,4,7,8-tetramethyl-1,10-phenanthroline) using the same C-C radical coupling photochemistry as dchtmp, the corresponding Cu(I) complex could not be isolated due to the steric hindrance presented at the metal center. Ultimately, the successful preparation of [Cu(dchtmp)2]+ represents a major step forward for the design and discovery of novel earth-abundant photosensitizers made possible through a newly conceived ligand synthetic strategy.
- Subjects :
- Steric effects
010405 organic chemistry
Chemistry
Phenanthroline
010402 general chemistry
Photochemistry
01 natural sciences
0104 chemical sciences
Inorganic Chemistry
chemistry.chemical_compound
Intersystem crossing
Excited state
Ultrafast laser spectroscopy
Photosensitizer
Physical and Theoretical Chemistry
Homoleptic
Diimine
Subjects
Details
- ISSN :
- 1520510X
- Volume :
- 60
- Issue :
- 12
- Database :
- OpenAIRE
- Journal :
- Inorganic chemistry
- Accession number :
- edsair.doi.dedup.....bcf793ed81bd5ec2af36b91181260ebd