Back to Search Start Over

Unequivocal determination of complex molecular structures using anisotropic NMR measurements

Authors :
Jon Clardy
Josep Saurí
Gary E. Martin
Henk Hiemstra
R. Thomas Williamson
Mark W. Peczuh
Emily Mevers
Yizhou Liu
Source :
Science (New York, N.Y.). 356(6333)
Publication Year :
2016

Abstract

INTRODUCTION Single-crystal x-ray diffraction studies represent the gold standard for unequivocal establishment of molecular structure and configuration. For molecules that will not crystallize or that form poorly-diffracting crystals, alternative methods must be used. Crystalline sponges and atomic force microscopy are techniques with increasing potential, although nuclear magnetic resonance (NMR) spectroscopy methods provide the primary viable alternative means to determine molecular structures. However, misinterpretation of NMR data—as a result of poor data quality, inappropriate experiment selection, or investigator bias—has led to burgeoning numbers of structure revision reports. Clearly, the development of a method to more effectively use NMR data and simultaneously quell reports of incorrect structures would be highly beneficial. RATIONALE Combining computer-assisted structure elucidation (CASE) algorithms and density functional theory (DFT) calculations with measured anisotropic NMR parameters, specifically residual dipolar coupling (RDC), and residual chemical shift anisotropy (RCSA) holds strong promise as an effective alternative means of assigning three-dimensional (3D) molecular structures. Anisotropic NMR data provide a spatial view of the relative orientations between bonds (RDCs) and chemical shielding tensors (RCSAs), regardless of the separation between the bonds and atoms, respectively. Hence, these data are sensitive reporters of global structural validity. The combination of DFT calculations and anisotropic NMR data represents an orthogonal approach to conventional NMR data interpretation that is not subject to the interpretational biases of human investigators and, as such, mitigates the risk of incorrect structure assignments. RESULTS Anisotropic NMR data can be used directly to evaluate the validity of investigator-proposed structures or can be combined with a CASE program in conjunction with DFT calculations for both structural proposal and validation. The RDC data are typically used to structurally define C-H bond vectors, whereas the RCSA data report on the chemical shift tensors of both protonated and nonprotonated carbons, the latter only accessible by long-range RDC data that are difficult to measure and interpret. These data are used to evaluate a given structure proposal on the basis of the agreement between the experimentally measured data and theoretical values calculated for the corresponding 3D DFT models. When structures generated by a CASE program are being considered, the method only requires a multidimensional NMR data set of sufficient quality and sophistication to allow the CASE program to generate a set of proposals that contains the correct structure of the molecule. The molecules being studied should also be amenable to modern DFT calculations for 3D model building. The CASE program output is sorted on the basis of cumulative error between experimental and calculated 13C data for the ensemble of structures generated, and the best-fitting molecules are subsequently subjected to DFT calculation for analysis. Results obtained using the proposed method demonstrate its applicability to a diverse range of complex molecules, each of which challenged the investigators originally reporting the structures. CONCLUSION The technique described here represents a potential paradigm shift from conventional NMR data interpretation and can provide an unequivocal and unbiased confirmation of interatomic connectivity and relative configuration for organic and natural product structures.

Details

ISSN :
10959203
Volume :
356
Issue :
6333
Database :
OpenAIRE
Journal :
Science (New York, N.Y.)
Accession number :
edsair.doi.dedup.....bcebe206127516b41b4450952e613f19