Back to Search
Start Over
Structural features, anti-coagulant and anti-adhesive potentials of blue crab (Portunus segnis) chitosan derivatives: Study of the effects of acetylation degree and molecular weight
- Source :
- International Journal of Biological Macromolecules, International Journal of Biological Macromolecules, Elsevier, 2020, 160, pp.593-601. ⟨10.1016/j.ijbiomac.2020.05.246⟩
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- International audience; The present study was undertaken to establish a distinct relationship between blue crab chitosan (Cs) acetylation degree (AD) and molecular weight (Mw) and its structural features, thermal properties and bioactivity. Therefore, chitosans with different AD were prepared and Cellulase was used to produce Cs derivatives with decreasing Mw. Results clearly display a decrease of the ordered structure of Cs, with the increase of AD and the decrease of Mw. Thermal stability/degradation screening disclose a greater thermal resistance for Cs with lower AD and higher Mw. The anti-adhesive potential of Cs was, additionally, studied, as function of AD and Mw. The effectiveness of Cs in preventing biofilm adhesion was strongly influenced by its AD and Mw, with the lowest inhibition values for higher AD and lower Mw. Interestingly, the effectiveness of Cs in disrupting pre-formed biofilms increased with decreasing Mw. Moreover, Cs derivatives were found to be advantageously efficient in prolonging human blood clotting times, based on data of activated partial thromboplastin time, Quick time and thrombin time assays, typically for the intrinsic coagulation pathway. Accordingly, depending on the predicted application of Cs, either in food, biomedical and pharmaceutical industries, AD and Mw are critical traits to be inevitably reflected on.
- Subjects :
- Brachyura
[CHIM.THER]Chemical Sciences/Medicinal Chemistry
02 engineering and technology
Cellulase
Thrombin time
Biochemistry
Chitosan
03 medical and health sciences
chemistry.chemical_compound
Structural Biology
Adhesives
medicine
Animals
Humans
Blue crab chitosan derivatives
Thermal stability
Blood Coagulation
Molecular Biology
030304 developmental biology
0303 health sciences
medicine.diagnostic_test
biology
Thrombin
Acetylation
General Medicine
Adhesion
021001 nanoscience & nanotechnology
Molecular Weight
[CHIM.POLY]Chemical Sciences/Polymers
chemistry
Biofilms
biology.protein
Biophysics
Degradation (geology)
Antiadhesive
anticoagulant
0210 nano-technology
Partial thromboplastin time
Subjects
Details
- ISSN :
- 01418130
- Volume :
- 160
- Database :
- OpenAIRE
- Journal :
- International Journal of Biological Macromolecules
- Accession number :
- edsair.doi.dedup.....bcdebcab88d026f56c773e3e9ab12801