Back to Search Start Over

Probabilistic reconstruction of genealogies for polyploid plant species

Authors :
Chiraz Trabelsi
Fabien Panloup
Jérémy Clotault
Frédéric Proïa
Laboratoire Angevin de Recherche en Mathématiques (LAREMA)
Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherche en Horticulture et Semences (IRHS)
AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA)-Université d'Angers (UA)
Université d'Angers (UA)
Université d'Angers (UA)-Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
French Region Pays de la Loire
Angers Loire Metropole
European Regional Development Fund
National Institute of Agricultural Research (INRA)
National Natural Science Foundation of China
French Ministry of Higher Education and Research
University of Bretagne Loire
University of Angers
Source :
Journal of Theoretical Biology, Journal of Theoretical Biology, Elsevier, 2019, 462, pp.537-551, Journal of Theoretical Biology, Elsevier, 2019, 462, pp.537-551. ⟨10.1016/j.jtbi.2018.11.031⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

A probabilistic reconstruction of genealogies in a polyploid population (from 2x to 4x) is investigated, by considering genetic data analyzed as the probability of allele presence in a given genotype. Based on the likelihood of all possible crossbreeding patterns, our model enables us to infer and to quantify the whole potential genealogies in the population. We explain in particular how to deal with the uncertain allelic multiplicity that may occur with polyploids. Then we build an \textit{ad hoc} penalized likelihood to compare genealogies and to decide whether a particular individual brings sufficient information to be included in the taken genealogy. This decision criterion enables us in a next part to suggest a greedy algorithm in order to explore missing links and to rebuild some connections in the genealogies, retrospectively. As a by-product, we also give a way to infer the individuals that may have been favored by breeders over the years. In the last part we highlight the results given by our model and our algorithm, firstly on a simulated population and then on a real population of rose bushes. Most of the methodology relies on the maximum likelihood principle and on graph theory.<br />Comment: 26 pages, 14 figures, 3 tables

Details

Language :
English
ISSN :
00225193 and 10958541
Database :
OpenAIRE
Journal :
Journal of Theoretical Biology, Journal of Theoretical Biology, Elsevier, 2019, 462, pp.537-551, Journal of Theoretical Biology, Elsevier, 2019, 462, pp.537-551. ⟨10.1016/j.jtbi.2018.11.031⟩
Accession number :
edsair.doi.dedup.....bca2bc1992f59fdf9e2d5b7b4c7c19bc
Full Text :
https://doi.org/10.1016/j.jtbi.2018.11.031⟩