Back to Search
Start Over
Pericentromeric noncoding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer
- Source :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Year :
- 2021
- Publisher :
- Proceedings of the National Academy of Sciences, 2021.
-
Abstract
- Significance During the aging process, senescent cells secrete inflammatory factors, causing various age-related pathologies. Thus, controlling the senescence-associated secretory phenotype (SASP) can tremendously benefit human health. Although SASP seems to be induced by the alteration of chromosomal organization, its underlying mechanism remains unclear. Here, it has been revealed that noncoding RNA (ncRNA) transcribed from pericentromeric repetitive elements impairs the DNA binding of CCCTC-binding factor, resulting in the alteration of chromosomal accessibility and the activation of SASP-like inflammatory genes. Notably, the ncRNA was transferred into surrounding cells via small extracellular vesicles, acting as a tumorigenic SASP factor. Our study highlights a novel mechanism regulating chromatin interaction and inflammatory gene expression in senescence and cancer.<br />Cellular senescence causes a dramatic alteration of chromatin organization and changes the gene expression profile of proinflammatory factors, thereby contributing to various age-related pathologies through the senescence-associated secretory phenotype (SASP). Chromatin organization and global gene expression are maintained by the CCCTC-binding factor (CTCF); however, the molecular mechanism underlying CTCF regulation and its association with SASP gene expression remains unclear. We discovered that noncoding RNA (ncRNA) derived from normally silenced pericentromeric repetitive sequences directly impairs the DNA binding of CTCF. This CTCF disturbance increases the accessibility of chromatin and activates the transcription of SASP-like inflammatory genes, promoting malignant transformation. Notably, pericentromeric ncRNA was transferred into surrounding cells via small extracellular vesicles acting as a tumorigenic SASP factor. Because CTCF blocks the expression of pericentromeric ncRNA in young cells, the down-regulation of CTCF during cellular senescence triggers the up-regulation of this ncRNA and SASP-related inflammatory gene expression. In this study, we show that pericentromeric ncRNA provokes chromosomal alteration by inhibiting CTCF, leading to a SASP-like inflammatory response in a cell-autonomous and non–cell-autonomous manner and thus may contribute to the risk of tumorigenesis during aging.
- Subjects :
- Senescence
Aging
RNA, Untranslated
senescence
Centromere
pericentromeric RNA
small extracellular vesicles
Biology
medicine.disease_cause
Mice
Transcription (biology)
Neoplasms
Gene expression
medicine
Animals
Humans
Cellular Senescence
Inflammation
Mice, Inbred BALB C
Multidisciplinary
fungi
DNA
DNA, Neoplasm
Cell Biology
Biological Sciences
CTCF
Non-coding RNA
Phenotype
Cell biology
Chromatin
DNA-Binding Proteins
HEK293 Cells
Gene Expression Regulation
senescence-associated secretory phenotype
Female
Carcinogenesis
Protein Binding
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 118
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....bc1358712210dac5e8045708728c3b75