Back to Search Start Over

Capacitive Energy Storage from −50 to 100 °C Using an Ionic Liquid Electrolyte

Authors :
Nalin L. Rupesinghe
Yury Gogotsi
Sébastien Fantini
Patrice Simon
Pierre-Louis Taberna
Volker Presser
Carlos R. Perez
Kenneth B. K. Teo
Rongying Lin
François Malbosc
Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT)
Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)
Solvionic (FRANCE)
Department of Materials Science and Engineering and A. J. Drexel Nanotechnology Institute ( Philadelfia, USA)
Drexel University
Aixtron (UK)
AIXTRON SE
Aixtron (UNITED KINGDOM)
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Drexel University (USA)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Source :
Journal of Physical Chemistry Letters, Journal of Physical Chemistry Letters, American Chemical Society, 2011, vol. 2, pp. 2396-2401. ⟨10.1021/jz201065t⟩
Publication Year :
2011
Publisher :
American Chemical Society (ACS), 2011.

Abstract

International audience; Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from -50 to 100 °C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s.

Details

ISSN :
19487185
Volume :
2
Database :
OpenAIRE
Journal :
The Journal of Physical Chemistry Letters
Accession number :
edsair.doi.dedup.....bbff8d5ba8ba8c2abad0f55850d40cc7
Full Text :
https://doi.org/10.1021/jz201065t