Back to Search
Start Over
The role of ions in the self-healing behavior of soft particle suspensions
- Source :
- PNAS
- Publication Year :
- 2016
- Publisher :
- Proceedings of the National Academy of Sciences, 2016.
-
Abstract
- Impurities in crystals generally cause point defects and can even suppress crystallization. This general rule, however, does not apply to colloidal crystals formed by soft microgel particles [Iyer ASJ, Lyon LA (2009) Angew Chem Int Ed 48:4562–4566], as, in this case, the larger particles are able to shrink and join the crystal formed by a majority of smaller particles. Using small-angle X-ray scattering, we find the limit in large-particle concentration for this spontaneous deswelling to persist. We rationalize our data in the context of those counterions that are bound to the microgel particles as a result of the electrostatic attraction exerted by the fixed charges residing on the particle periphery. These bound counterions do not contribute to the suspension osmotic pressure in dilute conditions, as they can be seen as internal degrees of freedom associated with each microgel particle. In contrast, at sufficiently high particle concentrations, the counterion cloud of each particle overlaps with that of its neighbors, allowing these ions to freely explore the space outside the particles. We confirm this scenario by directly measuring the osmotic pressure of the suspension. Because these counterions are then no longer bound, they create an osmotic pressure difference between the inside and outside of the microgels, which, if larger than the microgel bulk modulus, can cause deswelling, explaining why large, soft microgel particles feel the squeeze when suspended with a majority of smaller particles. We perform small-angle neutron scattering measurements to further confirm this remarkable behavior.
- Subjects :
- chemistry.chemical_classification
Multidisciplinary
Small-angle X-ray scattering
Scattering
Context (language use)
02 engineering and technology
Neutron scattering
Colloidal crystal
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Suspension (chemistry)
Condensed Matter::Soft Condensed Matter
Crystallography
chemistry
Chemical physics
Physical Sciences
Particle
Counterion
0210 nano-technology
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 113
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....bbb2960a4ed09501de5bf1736b7fd426
- Full Text :
- https://doi.org/10.1073/pnas.1516011113