Back to Search Start Over

Revealing the chirality origin and homochirality crystallization of Ag14 nanocluster at the molecular level

Authors :
Ying-Zhou Li
Qing-Wang Xue
Di Sun
Zhao-Zhen Cao
Lei Feng
Chen-Ho Tung
Zhi-Yong Gao
Shan-Shan Zhang
Yi-Cheng Liu
Zhi Wang
Xiao-Qian Liang
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-10 (2021), Nature Communications
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Although chirality is an ever-present characteristic in biology and some artificial molecules, controlling the chirality and demystifying the chirality origin of complex assemblies remain challenging. Herein, we report two homochiral Ag14 nanoclusters with inherent chirality originated from identical rotation of six square faces on a Ag8 cube driven by intra-cluster π···π stacking interaction between pntp− (Hpntp = p-nitrothiophenol) ligands. The spontaneous resolution of the racemic (SD/rac-Ag14a) to homochiral nanoclusters (SD/L-Ag14 and SD/R-Ag14) can be realized by re-crystallizing SD/rac-Ag14a in acetonitrile, which promotes the homochiral crystallization in solid state by forming C–H···O/N hydrogen bonds with nitro oxygen atoms in pntp− or aromatic hydrogen atoms in dpph (dpph = 1,6-bis(diphenylphosphino)hexane) on Ag14 nanocluster. This work not only provides strategic guidance for the syntheses of chiral silver nanoclusters in an all-achiral environment, but also deciphers the origin of chirality at molecular level by identifying the special effects of intra- and inter-cluster supramolecular interactions.<br />The preparation of chiral monolayer-protected metal clusters is interesting for their potential applications in a variety of fields, including catalysis. Here, the authors synthesize chiral Ag14 nanoclusters in an all-achiral environment, and decipher the origin of chirality at the molecular level; the solvent choice is key to achieve homochiral crystallization.

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....bb9eb74b0ae0d44f198e38ff32d433e1