Back to Search Start Over

Soil nutrient loss through erosion: Impact of different cropping systems and soil amendments in Ghana

Authors :
J. Sarkodie-Addo
Charles Quansah
Janvier Bigabwa Bashagaluke
Andrews Opoku
Vincent Logah
Source :
PLoS ONE, PLoS ONE, Vol 13, Iss 12, p e0208250 (2018)
Publication Year :
2018
Publisher :
Public Library of Science (PLoS), 2018.

Abstract

Soil erosion is a multifactor threat to crop production and the environment. Most studies on soil erosion characterization have not focused on soil nutrient loss associated with erosion. The aim of this study was therefore to quantify the magnitude of nutrient loss through soil erosion under different cropping systems and amendments to inform agronomic practices in sub-Saharan Africa (SSA). A field experiment was carried out on runoff plots with different cropping systems (sole maize, sole cowpea, sole maize and maize intercropped with soybean) as main plots and soil amendments (biochar, NPK (Nitrogen +Phosphorus +Potassium) fertilizer, NPK + biochar and a control (no amendment)) constituting the subplots in a randomized complete block design. For each block, a bare plot was included to assess the efficiency of the different crop and soil management practices on soil erosion. The study was carried out in three consecutive cropping seasons in the semi-deciduous forest zone of Ghana. The bare plots had the highest amounts of nitrogen (N), phosphorus (P), and potassium (K) eroded: 33.88, 12.35 and 12.75 kg ha-1 respectively followed by the control plots with magnitude of 20.43, 8.42 and 7.87 kg ha-1 respectively for N, P and K. Sole maize had the highest amounts of nutrient loss: 19.71, 8.12 and 7.27 for N, P and K respectively compared to all the other cropping systems where the losses varied respectively from 12.38 to 17.12, 6.67 to 7.49 and 5.81 to 6.75 kg ha-1 The legume-based cropping systems under inorganic fertilizer and biochar management effectively reduced nutrient loss more than all other treatment combinations. The off-site effect of soil erosion expressed as enrichment ratio (ER) was higher for all plots, which received inorganic fertilizer inputs varying from 1.93 to 3.06 while the other treatments had ERs of 1.51 to 2.03. The ERs of fine soil particles were greater than 1 (ranging from 1.14 to 3.6) being relatively higher than that of coarse particles (sand) with values below 1 (ranging from 0.62 to 0.88). The least cumulative monetary value of nutrient loss (30.82 US$ ha-1) was observed under cowpea cropping system which received NPK + BC treatment. Soil erosion affected directly soil nutrient depletion through nutrient loss; however, integrated soil fertility management associated with legume-based cropping systems can be alternative options to reducing its effects on croplands in SSA.

Details

ISSN :
19326203
Volume :
13
Database :
OpenAIRE
Journal :
PLOS ONE
Accession number :
edsair.doi.dedup.....bb60005c6156e329d08f152627ca5f65