Back to Search
Start Over
An Effective Prediction Model for Online Course Dropout Rate
- Source :
- International Journal of Distance Education Technologies. 18:94-110
- Publication Year :
- 2020
- Publisher :
- IGI Global, 2020.
-
Abstract
- Due to tremendous reception on digital learning platforms, many online users tend to register for online courses in MOOC offered by many prestigious universities all over the world and gain a lot on cutting edge technologies in niche courses. As the reception of online courses is increasing on one side, there have been huge dropouts of participants in the online courses causing serious problems for the course owners and other MOOC administrators. Hence, it is deemed necessary to find out the root causes of course dropouts and need to prepare a workable solution to prevent that outcome in the future. In this connection, the authors made use of three machine learning algorithms such as support vector machine, random forest, and conditional random fields. The huge samples of datasets were downloaded from the Open University of China, that is, almost 7K student profiles were extracted for the empirical analysis. The datasets were loaded into a confusion matrix and analyzed for the accuracy, precision, recall, and f-score of the model. © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
- Subjects :
- VLE
Computer Networks and Communications
Computer science
MOOC
050801 communication & media studies
computer.software_genre
Education
Dropout Prediction
Machine Learning Algorithms
0508 media and communications
Online Course
Online course
Computer software
ComputingMilieux_COMPUTERSANDEDUCATION
Digital learning
Open University
Dropout (neural networks)
Random Forest
Multimedia
Age differences
05 social sciences
050301 education
Open university
Computer Science Applications
Random forest
Course Rubrics
Register (music)
0503 education
computer
Subjects
Details
- ISSN :
- 15393119 and 15393100
- Volume :
- 18
- Database :
- OpenAIRE
- Journal :
- International Journal of Distance Education Technologies
- Accession number :
- edsair.doi.dedup.....bb3e8c89bd47519aaf372ff3676eb6f5
- Full Text :
- https://doi.org/10.4018/ijdet.2020100106