Back to Search Start Over

MultiScale Analysis for Linear First Order PDEs. The Finite Larmor Radius Regime

Authors :
Mihai Bostan
Institut de Mathématiques de Marseille (I2M)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Source :
SIAM Journal on Mathematical Analysis, SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2016, 48 (3), pp.2133-2188. ⟨10.1137/15M1033034⟩, SIAM Journal on Mathematical Analysis, 2016, 48 (3), pp.2133-2188. ⟨10.1137/15M1033034⟩
Publication Year :
2016

Abstract

International audience; The subject matter of this paper concerns the asymptotic analysis of mathematical models for strongly magnetized plasmas. We concentrate on the finite Larmor radius regime with non uniform magnetic field in three dimensions. We determine the limit model and establish convergence results for any initial conditions, not necessarily well prepared. This study relies on a two-scale approach, based on the mean ergodic theorem, which allows us to separate between the fast and slow dynamics. The method adapts to many models. In particular it is possible to incorporate collision operators and to compute the effective diffusion matrices of the limit models. The average advection field and average diffusion matrix field appear as the long time limit for some parabolic problems, which allows us to obtain good approximations of the limit models, in the case of non uniform magnetic fields (when exact formulae are not available).

Details

ISSN :
00361410
Database :
OpenAIRE
Journal :
SIAM Journal on Mathematical Analysis
Accession number :
edsair.doi.dedup.....bb22243578e0ba1a29c946fded40acfe
Full Text :
https://doi.org/10.1137/15m1033034