Back to Search
Start Over
p53 Transcriptional Activation Domain: A Molecular Chameleon?
- Source :
- Cell Cycle. 5:489-494
- Publication Year :
- 2006
- Publisher :
- Informa UK Limited, 2006.
-
Abstract
- The recent structure of human replication protein A (RPA) bound to residues 38-58 of tumor suppressor p53 exemplifies several important features of protein-protein interactions involved in transcription and DNA repair. First, the N-terminal transcriptional activation domain (TAD) of p53 is multifunctional and dynamic, showing multiple interactions with partner proteins some of which are modulated by phosphorylation. Second, the binding of partner proteins is coupled with a disorder-to-order transition common to many other transcriptional activation domains. Third, the molecular features of p53 residues 47-58 imitate those of single stranded DNA in their interaction with the oligonucleotide oliogsaccharide-binding (OB) fold of the N-terminal domain of RPA70. This regulated association is implicated in transmitting the DNA damage signal to the p53 pathway of stress response. Here we review the recently reported crystal structure of the p53/RPA70N complex and the mechanism by which ssDNA can provide positive feedback to dissociate p53/RPA complexes. The binding mode and regulatory mechanisms of the p53/RPA70N interaction may represent a general paradigm for regulation of the OB folds involved in DNA repair and metabolism.
- Subjects :
- Transcriptional Activation
Genetics
HMG-box
DNA damage
DNA repair
Recombinant Fusion Proteins
DNA
Cell Biology
Biology
Protein Structure, Tertiary
Protein–protein interaction
Cell biology
chemistry.chemical_compound
Protein structure
chemistry
Replication Protein A
Humans
Tumor Suppressor Protein p53
Molecular Biology
Replication protein A
Developmental Biology
Binding domain
Subjects
Details
- ISSN :
- 15514005 and 15384101
- Volume :
- 5
- Database :
- OpenAIRE
- Journal :
- Cell Cycle
- Accession number :
- edsair.doi.dedup.....baa28991e03707905bda2667e3c30c48
- Full Text :
- https://doi.org/10.4161/cc.5.5.2489