Back to Search Start Over

Computing the Cut Locus of a Riemannian Manifold via Optimal Transport

Authors :
Enrico Facca
Luca Berti
Francesco Fassò
Mario Putti
Reliable numerical approximations of dissipative systems (RAPSODI )
Laboratoire Paul Painlevé - UMR 8524 (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Institut de Recherche Mathématique Avancée (IRMA)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Università degli Studi di Padova = University of Padua (Unipd)
Laboratoire Paul Painlevé (LPP)
Dipartimento di Matematica [Padova]
Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Inria Lille - Nord Europe
Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
Universita degli Studi di Padova
Source :
ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, 2022, 56 (6), pp.1939-1954. ⟨10.1051/m2an/2022059⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge–Kantorovich equations, a PDE formulation of the optimal transport problem with cost equal to the geodesic distance. Combining this result with an optimal transport numerical solver, based on the so-called dynamical Monge–Kantorovich approach, we propose a novel framework for the numerical approximation of the cut locus of a point in a manifold. We show the applicability of the proposed method on a few examples settled on 2d-surfaces embedded in ℝ3, and discuss advantages and limitations.

Details

Language :
English
ISSN :
0764583X and 12903841
Database :
OpenAIRE
Journal :
ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, 2022, 56 (6), pp.1939-1954. ⟨10.1051/m2an/2022059⟩
Accession number :
edsair.doi.dedup.....ba9dc1a2f367eed7894bc51ebb1756e6