Back to Search
Start Over
Programmable SiteāSpecific Functionalization of DNA Origami with Polynucleotide Brushes
- Source :
- Angew Chem Int Ed Engl
- Publication Year :
- 2021
- Publisher :
- Wiley, 2021.
-
Abstract
- Combining surface-initiated, TdT (terminal deoxynucleotidyl transferase) catalyzed enzymatic polymerization (SI-TcEP) with precisely engineered DNA origami nanostructures (DONs) presents an innovative pathway for the generation of stable, polynucleotide brush-functionalized origami nanostructures. We demonstrate that SI-TcEP can site-specifically pattern DONs with brushes containing both natural and non-natural nucleotides. The brush functionalization can be precisely controlled in terms of the location of initiation sites on the origami core and the brush height and composition. Coarse-grained simulations predict the conformation of the brush-functionalized DONs that agree well with the experimentally observed morphologies. We find that polynucleotide brush-functionalization increases the nuclease resistance of DONs significantly, and that this stability can be spatially programmed through the site-specific growth of polynucleotide brushes. The ability to site-specifically decorate DONs with brushes of natural and non-natural nucleotides provides access to a large range of functionalized DON architectures that would allow for further supramolecular assembly, and for potential applications in smart nanoscale delivery systems.
- Subjects :
- Nuclease
Nanostructure
biology
Chemistry
Polynucleotides
Nanotechnology
General Medicine
DNA
General Chemistry
Proof of Concept Study
Article
Catalysis
Nanostructures
Polymerization
Supramolecular assembly
DNA Nucleotidylexotransferase
Polynucleotide
DNA nanotechnology
biology.protein
Nucleic Acid Conformation
Thymine Nucleotides
Surface modification
DNA origami
Deoxyuracil Nucleotides
Subjects
Details
- ISSN :
- 15213773 and 14337851
- Volume :
- 60
- Database :
- OpenAIRE
- Journal :
- Angewandte Chemie International Edition
- Accession number :
- edsair.doi.dedup.....ba72b32bbbdcdbca971a12b8ff922d17