Back to Search
Start Over
MRI-Based Radiomics Models for Predicting Risk Classification of Gastrointestinal Stromal Tumors
- Source :
- Frontiers in Oncology, Frontiers in Oncology, Vol 11 (2021)
- Publication Year :
- 2021
- Publisher :
- Frontiers Media S.A., 2021.
-
Abstract
- BackgroundWe conduct a study in developing and validating four MRI-based radiomics models to preoperatively predict the risk classification of gastrointestinal stromal tumors (GISTs).MethodsForty-one patients (low-risk = 17, intermediate-risk = 13, high-risk = 11) underwent MRI before surgery between September 2013 and March 2019 in this retrospective study. The Kruskal–Wallis test with Bonferonni correction and variance threshold was used to select appropriate features, and the Random Forest model (three classification model) was used to select features among the high-risk, intermediate-risk, and low-risk of GISTs. The predictive performance of the models built by the Random Forest was estimated by a 5-fold cross validation (5FCV). Their performance was estimated using the receiver operating characteristic (ROC) curve, summarized as the area under the ROC curve (AUC). Area under the curve (AUC), accuracy, sensitivity, and specificity for risk classification were reported. Linear discriminant analysis (LDA) was used to assess the discriminative ability of these radiomics models.ResultsThe high-risk, intermediate-risk, and low-risk of GISTs were well classified by radiomics models, the micro-average of ROC curves was 0.85, 0.81, 0.87 and 0.94 for T1WI, T2WI, ADC and combined three MR sequences. And ROC curves achieved excellent AUCs for T1WI (0.85, 0.75 and 0.82), T2WI (0.69, 0.78 and 0.78), ADC (0.85, 0.77 and 0.80) and combined three MR sequences (0.96, 0.92, 0.81) for the diagnosis of high-risk, intermediate-risk, and low-risk of GISTs, respectively. In addition, LDA demonstrated the different risk of GISTs were correctly classified by radiomics analysis (61.0% for T1WI, 70.7% for T2WI, 83.3% for ADC, and 78.9% for the combined three MR sequences).ConclusionsRadiomics models based on a single sequence and combined three MR sequences can be a noninvasive method to evaluate the risk classification of GISTs, which may help the treatment of GISTs patients in the future.
- Subjects :
- Cancer Research
medicine.medical_specialty
gastrointestinal stromal tumour
Cross-validation
030218 nuclear medicine & medical imaging
03 medical and health sciences
0302 clinical medicine
Radiomics
Discriminative model
medicine
magnetic resonance imaging
RC254-282
Original Research
model
medicine.diagnostic_test
Receiver operating characteristic
business.industry
Area under the curve
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
Magnetic resonance imaging
Linear discriminant analysis
Random forest
Oncology
classification
radiomics
030220 oncology & carcinogenesis
Radiology
business
Subjects
Details
- Language :
- English
- ISSN :
- 2234943X
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Frontiers in Oncology
- Accession number :
- edsair.doi.dedup.....ba6c1728921aca82ce2c482b94a76ff6