Back to Search
Start Over
MAX, a Laue diffraction lens for nuclear astrophysics
- Source :
- Experimental Astronomy, Experimental Astronomy, springer Link, 2005, 20, pp.269-278. ⟨10.1007/s10686-006-9058-x⟩, Experimental Astronomy, 2005, 20, pp.269-278. ⟨10.1007/s10686-006-9058-x⟩
- Publication Year :
- 2005
- Publisher :
- HAL CCSD, 2005.
-
Abstract
- The next generation of instrumentation for nuclear astrophysics will have to achieve a factor of 10–100 improvement in sensitivity over present technologies. With the focusing gamma-ray telescope MAX we take up this challenge: combining unprecedented sensitivity with high spectral and angular resolution, and the capability of measuring the polarization of the incident photons. The feasibility of such a crystal diffraction gamma-ray lens has recently been demonstrated with the prototype lens CLAIRE. MAX is a proposed mission which will make use of satellite formation flight to achieve 86 m focal length, with the Laue lens being carried by one satellite and the detector by the other. In the current design, the Laue diffraction lens of MAX will consist of 13740 copper and germanium (Ge1−x Si x , x ∼ 0.02) crystal tiles arranged on 36 concentric rings. It simultaneously focuses in two energy bands, each centred on one of the main scientific objectives of the mission: the 800–900 keV band is dedicated to the study of nuclear gamma-ray lines from type Ia supernovae (e.g. 56 Co decay line at 847 keV) while the 450–530 keV band focuses on electron-positron annihilation (511 keV emission) from the Galactic centre region with the aim of resolving potential point sources. MAX promises a breakthrough in the study of point sources at gamma-ray energies by combining high narrow-line sensitivity (better than 10−6 cm−2 s−1) and high energy resolution (E/dE ∼ 500). The mission has successfully undergone a pre-phase A study with the French Space Agency CNES, and continues to evolve: new diffracting materials such as bent or composite crystals seem very promising.
- Subjects :
- Diffraction
Photon
Astrophysics::High Energy Astrophysical Phenomena
7. Clean energy
01 natural sciences
law.invention
Telescope
[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]
Optics
law
0103 physical sciences
Nuclear astrophysics
[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]
Focal length
[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
010303 astronomy & astrophysics
Physics
[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]
010308 nuclear & particles physics
business.industry
Detector
Instrumentation: Gamma-ray Laue lens
Gamma-ray astrophysics
Astronomy and Astrophysics
Polarization (waves)
Mosaic crystals
95.55.Ka, 61.50.Ah, 61.10.-i, 41.50.+h
Space and Planetary Science
X-ray crystallography
business
Subjects
Details
- Language :
- English
- ISSN :
- 09226435 and 15729508
- Database :
- OpenAIRE
- Journal :
- Experimental Astronomy, Experimental Astronomy, springer Link, 2005, 20, pp.269-278. ⟨10.1007/s10686-006-9058-x⟩, Experimental Astronomy, 2005, 20, pp.269-278. ⟨10.1007/s10686-006-9058-x⟩
- Accession number :
- edsair.doi.dedup.....ba59b8ed50e70171d31d2fb81819fe22
- Full Text :
- https://doi.org/10.1007/s10686-006-9058-x⟩