Back to Search Start Over

Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras

Authors :
Leandro Cagliero
Fernando Levstein
Fernando Szechtman
Source :
CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Given a sequence d~ = (d1, . . . , dk) of natural numbers, we consider the Lie subalgebra h of gl(d, F), where d = d1 + · · · + dk and F is a field of characteristic 0, generated by two block upper triangular matrices D and E partitioned according to d~, and study the problem of computing the nilpotency degree m of the nilradical n of h. We obtain a complete answer when D and E belong to a certain family of matrices that arises naturally when attempting to classify the indecomposable modules of certain solvable Lie algebras. Our determination of m depends in an essential manner on the symmetry of E with respect to an outer automorphism of sl(d). The proof that m depends solely on this symmetry is long and delicate. As a direct application of our investigations on h and n we give a full classification of all uniserial modules of an extension of the free ℓ-step nilpotent Lie algebra on n generators when F is algebraically closed. Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Levstein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Szechtman, Fernando. University Of Regina; Canadá

Details

ISSN :
00218693
Volume :
585
Database :
OpenAIRE
Journal :
Journal of Algebra
Accession number :
edsair.doi.dedup.....ba3806a82aeb54993ae716812ca28c9d