Back to Search Start Over

Structures of human galectin-10/monosaccharide complexes demonstrate potential of monosaccharides as effectors in forming Charcot-Leyden crystals

Authors :
Hiromi Yoshida
Takanori Nakamura
Aiko Itoh
Yasuhiro Nonaka
Shigehiro Kamitori
Nozomu Nishi
Shin-ichi Nakakita
Source :
Biochemical and Biophysical Research Communications. 525:87-93
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

The galectins are a family of β-galactoside-specific animal lectins, and have attracted much attention as novel regulators of the immune system. Galectin-10 is well-expressed in eosinophils, and spontaneously forms Charcot-Leyden crystals (CLCs), during prolonged eosinophilic inflammatory reactions, which are frequently observed in eosinophilic diseases. Although biochemical and structural characterizations of galectin-10 have been done, its biological role and molecular mechanism are still unclear, and few X-ray structures of galectin-10 in complex with monosaccharides/oligosaccharides have been reported. Here, X-ray structures of galectin-10 in complexes with seven monosaccharides are presented with biochemical analyses to detect interactions of galectin-10 with monosaccharides/oligosaccharides. Galectin-10 forms a homo-dimer in the face-to-face orientation, and the monosaccharides bind to the carbohydrate recognition site composed of amino acid residues from two galectin-10 molecules of dimers, suggesting that galectin-10 dimer likely captures the monosaccharides in solution and in vivo. d -Glucose, d -allose, d -arabinose, and D-N-acetylgalactosamine bind to the interfaces between galectin-10 dimers in crystals, and they affect the stability of molecular packing in crystals, leading to easy-dissolving of CLCs, and/or inhibiting the formation of CLCs. These monosaccharides may serve as effectors of G10 to form CLCs in vivo.

Details

ISSN :
0006291X
Volume :
525
Database :
OpenAIRE
Journal :
Biochemical and Biophysical Research Communications
Accession number :
edsair.doi.dedup.....ba338ff27067d35ee7a48acb604723f3
Full Text :
https://doi.org/10.1016/j.bbrc.2020.02.037