Back to Search Start Over

AutonoVi: Autonomous Vehicle Planning with Dynamic Maneuvers and Traffic Constraints

Authors :
Daniel Barber
Dinesh Manocha
Sahil Narang
Andrew Best
Source :
IROS
Publication Year :
2017

Abstract

We present AutonoVi:, a novel algorithm for autonomous vehicle navigation that supports dynamic maneuvers and satisfies traffic constraints and norms. Our approach is based on optimization-based maneuver planning that supports dynamic lane-changes, swerving, and braking in all traffic scenarios and guides the vehicle to its goal position. We take into account various traffic constraints, including collision avoidance with other vehicles, pedestrians, and cyclists using control velocity obstacles. We use a data-driven approach to model the vehicle dynamics for control and collision avoidance. Furthermore, our trajectory computation algorithm takes into account traffic rules and behaviors, such as stopping at intersections and stoplights, based on an arc-spline representation. We have evaluated our algorithm in a simulated environment and tested its interactive performance in urban and highway driving scenarios with tens of vehicles, pedestrians, and cyclists. These scenarios include jaywalking pedestrians, sudden stops from high speeds, safely passing cyclists, a vehicle suddenly swerving into the roadway, and high-density traffic where the vehicle must change lanes to progress more effectively.<br />9 pages, 6 figures

Details

Language :
English
Database :
OpenAIRE
Journal :
IROS
Accession number :
edsair.doi.dedup.....ba32c2ec5cd9dd1ffd5a899c4224d16e