Back to Search Start Over

Ion Adsorption at the Rutile−Water Interface: Linking Molecular and Macroscopic Properties

Authors :
L. Cheng
James D. Kubicki
Michael L. Machesky
Serguei N. Lvov
Zhan Zhang
M. K. Ridley
Ariel A. Chialvo
David J. Wesolowski
Milan Předota
Paul Fenter
Donald A. Palmer
Neil C. Sturchio
Andrei V. Bandura
Lawrence M. Anovitz
Michael J. Bedzyk
Pascale Bénézeth
Peter T. Cummings
University of Science and Technology of China [Hefei] (USTC)
Argonne National Laboratory [Lemont] (ANL)
Quantum Electronics Laboratory
Adam Mickiewicz University in Poznań (UAM)
Géosciences Environnement Toulouse (GET)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP)
Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)
Source :
Langmuir, Langmuir, American Chemical Society, 2004, 20 (12), pp.4954-4969. ⟨10.1021/la0353834⟩
Publication Year :
2004
Publisher :
HAL CCSD, 2004.

Abstract

A comprehensive picture of the interface between aqueous solutions and the (110) surface of rutile (alpha-TiO2) is being developed by combining molecular-scale and macroscopic approaches, including experimental measurements, quantum calculations, molecular simulations, and Gouy-Chapman-Stern models. In situ X-ray reflectivity and X-ray standing-wave measurements are used to define the atomic arrangement of adsorbed ions, the coordination of interfacial water molecules, and substrate surface termination and structure. Ab initio calculations and molecular dynamics simulations, validated through direct comparison with the X-ray results, are used to predict ion distributions not measured experimentally. Potentiometric titration and ion adsorption results for rutile powders having predominant (110) surface expression provide macroscopic constraints of electrical double layer (EDL) properties (e.g., proton release) which are evaluated by comparison with a three-layer EDL model including surface oxygen proton affinities calculated using ab initio bond lengths and partial charges. These results allow a direct correlation of the three-dimensional, crystallographically controlled arrangements of various species (H2O, Na+, Rb+, Ca2+, Sr2+, Zn2+, Y3+, Nd3+) with macroscopic observables (H+ release, metal uptake, zeta potential) and thermodynamic/electrostatic constraints. All cations are found to be adsorbed as "inner sphere" species bonded directly to surface oxygen atoms, while the specific binding geometries and reaction stoichiometries are dependent on ionic radius. Ternary surface complexes of sorbed cations with electrolyte anions are not observed. Finally, surface oxygen proton affinities computed using the MUSIC model are improved by incorporation of ab initio bond lengths and hydrogen bonding information derived from MD simulations. This multitechnique and multiscale approach demonstrates the compatibility of bond-valence models of surface oxygen proton affinities and Stern-based models of the EDL structure, with the actual molecular interfacial distributions observed experimentally, revealing new insight into EDL properties including specific binding sites and hydration states of sorbed ions, interfacial solvent properties (structure, diffusivity, dielectric constant), surface protonation and hydrolysis, and the effect of solution ionic strength.

Details

Language :
English
ISSN :
07437463 and 15205827
Database :
OpenAIRE
Journal :
Langmuir, Langmuir, American Chemical Society, 2004, 20 (12), pp.4954-4969. ⟨10.1021/la0353834⟩
Accession number :
edsair.doi.dedup.....b9f34a0804d365a7fbac3a457b176336
Full Text :
https://doi.org/10.1021/la0353834⟩