Back to Search Start Over

Design, synthesis and biological evaluation of acridone analogues as novel STING receptor agonists

Authors :
Song Li
Wei Sun
Jun-hai Xiao
Jia-jia Chang
Shi Hou
Xin-lin Yan
Wei Li
Lan Xiujuan
Xiaohong Yang
Source :
Bioorganic chemistry. 95
Publication Year :
2019

Abstract

STING (Stimulator of Interferon Genes) has become a focal point in immunology research and a target in drug discovery. The discovery of a potent human-STING agonist is expected to revolutionize current anti-virus or cancer immunotherapy. Inspired by the structure and function of murine STING-specific agonists (DMXAA and CMA), we rationally designed and synthesized four series of novel compounds for the enhancement of human sensitivity. In the cell-based assay, we identified six compounds from all the synthetic small molecules: 2g, 9g, and 12b are STING agonists that are efficacious across species, and all have the skeleton of acridone; 1b, 1c, and 12c just function in the murine STING pathway. Notably, 12b exhibits the best activity among the six agonists, and its inductions of both human and murine STING-dependent signalling are similar to that of 2′3′-cGAMP, which is a well-known STING inducer. While a protein assay indicated that 2 g, 9 g, and 12b could activate the pathway by directly binding human STING, 12b also displayed the strongest binding affinity. Additionally, our studies show that 12b can induce faster, more powerful, and more durable responses of assorted cytokines in a native system than 2′3′-cGAMP. Consequently, our team is the first to successfully modify murine STING agonists to obtain human sensitivity, and these results suggest that 12b is a potent direct-human-STING agonist. Additionally, the acridone analogues demonstrate tremendous potential in the treatment of tumours or viral infections.

Details

ISSN :
10902120
Volume :
95
Database :
OpenAIRE
Journal :
Bioorganic chemistry
Accession number :
edsair.doi.dedup.....b9ef11742f8f84f3133ad03e68b75483