Back to Search
Start Over
C1q-TNF-Related Protein-9 Promotes Cardiac Hypertrophy and Failure
- Source :
- Circulation Research. 120:66-77
- Publication Year :
- 2017
- Publisher :
- Ovid Technologies (Wolters Kluwer Health), 2017.
-
Abstract
- Rationale: Myocardial endothelial cells promote cardiomyocyte hypertrophy, possibly through the release of growth factors. The identity of these factors, however, remains largely unknown, and we hypothesized here that the secreted CTRP9 (C1q-tumor necrosis factor–related protein-9) might act as endothelial-derived protein to modulate heart remodeling in response to pressure overload. Objective: To examine the source of cardiac CTRP9 and its function during pressure overload. Methods and Results: CTRP9 was mainly derived from myocardial capillary endothelial cells. CTRP9 mRNA expression was enhanced in hypertrophic human hearts and in mouse hearts after transverse aortic constriction (TAC). CTRP9 protein was more abundant in the serum of patients with severe aortic stenosis and in murine hearts after TAC. Interestingly, heterozygous and especially homozygous knock-out C1qtnf9 (CTRP9) gene-deleted mice were protected from the development of cardiac hypertrophy, left ventricular dilatation, and dysfunction during TAC. CTRP9 overexpression, in turn, promoted hypertrophic cardiac remodeling and dysfunction after TAC in mice and induced hypertrophy in isolated adult cardiomyocytes. Mechanistically, CTRP9 knock-out mice showed strongly reduced levels of activated prohypertrophic ERK5 (extracellular signal-regulated kinase 5) during TAC compared with wild-type mice, while CTRP9 overexpression entailed increased ERK5 activation in response to pressure overload. Inhibition of ERK5 by a dominant negative MEK5 mutant or by the ERK5/MEK5 inhibitor BIX02189 blunted CTRP9 triggered hypertrophy in isolated adult cardiomyocytes in vitro and attenuated mouse cardiomyocyte hypertrophy and cardiac dysfunction in vivo, respectively. Downstream of ERK5, we identified the prohypertrophic transcription factor GATA4, which was directly activated through ERK5-dependent phosphorylation. Conclusions: The upregulation of CTRP9 during hypertrophic heart disease facilitates maladaptive cardiac remodeling and left ventricular dysfunction and might constitute a therapeutic target in the future.
- Subjects :
- Male
0301 basic medicine
medicine.medical_specialty
Heart disease
Physiology
Cardiomegaly
Biology
Muscle hypertrophy
Rats, Sprague-Dawley
Mice
Ventricular Dysfunction, Left
03 medical and health sciences
Downregulation and upregulation
Internal medicine
medicine
Animals
Humans
Cells, Cultured
Glycoproteins
Heart Failure
Mice, Knockout
Pressure overload
GATA4
medicine.disease
Tumor Necrosis Factor Receptor-Associated Peptides and Proteins
Rats
Mice, Inbred C57BL
030104 developmental biology
Endocrinology
Aortic valve stenosis
Tumor necrosis factor alpha
Adiponectin
Signal transduction
Cardiology and Cardiovascular Medicine
Subjects
Details
- ISSN :
- 15244571 and 00097330
- Volume :
- 120
- Database :
- OpenAIRE
- Journal :
- Circulation Research
- Accession number :
- edsair.doi.dedup.....b9992fce5c21fe5f8a669eb700900225