Back to Search Start Over

Generalization of the QST framework in hierarchically structured populations: Impacts of inbreeding and dominance

Authors :
Sylvie Oddou-Muratorio
Ivan Scotti
François Lefèvre
Philippe Cubry
Ecologie des Forêts Méditerranéennes [Avignon] (URFM 629)
Institut National de la Recherche Agronomique (INRA)
Diversité, adaptation, développement des plantes (UMR DIADE)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
ANR-12-ADAP-0007- 01 FLAG
Ecologie des Forêts Méditerranéennes (URFM)
This work was supported by Agence Nationale de la Recherche (ANR) under the FLAG project ANR-12-ADAP-0007.
ANR-12-ADAP-0007,FLAG,Génétique écologique des arbres forestiers : interactions entre flux de gènes et variabilité environnementale dans la détermination de l'adaptation locale et du potentiel d'adaptation(2012)
Source :
Molecular Ecology Resources, Molecular Ecology Resources, Wiley/Blackwell, 2017, ⟨10.1111/1755-0998.12693⟩, Molecular Ecology Resources 6 (17), e76-e83. (2017), Molecular Ecology Resources, Wiley/Blackwell, 2017, 17 (6), ⟨10.1111/1755-0998.12693⟩, Molecular Ecology Resources, Wiley/Blackwell, 2017, 17 (6), pp.e76-e83. ⟨10.1111/1755-0998.12693⟩, Molecular Ecology Resources, 2017, 17 (6), pp.e76-e83. ⟨10.1111/1755-0998.12693⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

Q(ST) is a differentiation parameter based on the decomposition of the genetic variance of a trait. In the case of additive inheritance and absence of selection, it is analogous to the genic differentiation measured on individual loci, F(ST). Thus, Q(ST)−F(ST) comparison is used to infer selection: selective divergence when Q(ST) > F(ST), or convergence when Q(ST) < F(ST). The definition of Q-statistics was extended to two-level hierarchical population structures with Hardy–Weinberg equilibrium. Here, we generalize the Q-statistics framework to any hierarchical population structure. First, we developed the analytical definition of hierarchical Q-statistics for populations not at Hardy–Weinberg equilibrium. We show that the Q-statistics values obtained with the Hardy–Weinberg definition are lower than their corresponding F-statistics when F(IS) > 0 (higher when FIS < 0). Then, we used an island model simulation approach to investigate the impact of inbreeding and dominance on the Q(ST)−F(ST) framework in a hierarchical population structure. We show that, while differentiation at the lower hierarchical level (Q(SR)) is a monotonic function of migration, differentiation at the upper level (Q(RT)) is not. In the case of additive inheritance, we show that inbreeding inflates the variance of Q(RT), which can increase the frequency of Q(RT) > F(RT) cases. We also show that dominance drastically reduces Q-statistics below F-statistics for any level of the hierarchy. Therefore, high values of Q-statistics are good indicators of selection, but low values are not in the case of dominance.

Details

Language :
English
ISSN :
1755098X and 17550998
Database :
OpenAIRE
Journal :
Molecular Ecology Resources, Molecular Ecology Resources, Wiley/Blackwell, 2017, ⟨10.1111/1755-0998.12693⟩, Molecular Ecology Resources 6 (17), e76-e83. (2017), Molecular Ecology Resources, Wiley/Blackwell, 2017, 17 (6), ⟨10.1111/1755-0998.12693⟩, Molecular Ecology Resources, Wiley/Blackwell, 2017, 17 (6), pp.e76-e83. ⟨10.1111/1755-0998.12693⟩, Molecular Ecology Resources, 2017, 17 (6), pp.e76-e83. ⟨10.1111/1755-0998.12693⟩
Accession number :
edsair.doi.dedup.....b966ef9335f49c8e9b4ec002de1590bb
Full Text :
https://doi.org/10.1111/1755-0998.12693⟩