Back to Search
Start Over
Modeling radiation-induced cell death: role of different levels of DNA damage clustering
- Source :
- Radiation and Environmental Biophysics. 54:305-316
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- Some open questions on the mechanisms underlying radiation-induced cell death were addressed by a biophysical model, focusing on DNA damage clustering and its consequences. DNA "cluster lesions" (CLs) were assumed to produce independent chromosome fragments that, if created within a micrometer-scale threshold distance (d), can lead to chromosome aberrations following mis-rejoining; in turn, certain aberrations (dicentrics, rings and large deletions) were assumed to lead to clonogenic cell death. The CL yield and d were the only adjustable parameters. The model, implemented as a Monte Carlo code called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA), provided simulated survival curves that were directly compared with experimental data on human and hamster cells exposed to photons, protons, α-particles and heavier ions including carbon and iron. d = 5 μm, independent of radiation quality, and CL yields in the range ~2-20 CLs Gy(-1) cell(-1), depending on particle type and energy, led to good agreement between simulations and data. This supports the hypothesis of a pivotal role of DNA cluster damage at sub-micrometric scale, modulated by chromosome fragment mis-rejoining at micrometric scale. To investigate the features of such critical damage, the CL yields were compared with experimental or theoretical yields of DNA fragments of different sizes, focusing on the base-pair scale (related to the so-called local clustering), the kbp scale ("regional clustering") and the Mbp scale, corresponding to chromatin loops. Interestingly, the CL yields showed better agreement with kbp fragments rather than bp fragments or Mbp fragments; this suggests that also regional clustering, in addition to other clustering levels, may play an important role, possibly due to its relationship with nucleosome organization in the chromatin fiber.
- Subjects :
- Nucleosome organization
Programmed cell death
Cell Survival
DNA damage
Biophysics
Biology
Models, Biological
Biophysical Phenomena
chemistry.chemical_compound
Cricetinae
Animals
Humans
Computer Simulation
DNA Breaks, Double-Stranded
Cluster analysis
General Environmental Science
Chromatin Fiber
Chromosome Aberrations
Radiation
Cell Death
Chromosome
DNA
Molecular biology
Chromatin
chemistry
DNA Damage
Subjects
Details
- ISSN :
- 14322099 and 0301634X
- Volume :
- 54
- Database :
- OpenAIRE
- Journal :
- Radiation and Environmental Biophysics
- Accession number :
- edsair.doi.dedup.....b95efe84985caa8640e28acbb9f18333