Back to Search Start Over

Combining EigenVoices and structural MLLR for speaker adaptation

Authors :
Fabrice Lauri
I. Mina
Dominique Fohr
Analysis, perception and recognition of speech (PAROLE)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Loria, Publications
Source :
ICASSP (1), IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP'03, IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP'03, Apr 2003, Hong Kong, China, 4 p
Publication Year :
2003
Publisher :
IEEE, 2003.

Abstract

Colloque avec actes et comité de lecture. internationale.; International audience; This papers considers the problem of speaker adaptation of acoustic models in speech recognition. We have investigated four possible methods which integrate the concepts of both Structural Maximum Likelihood Linear regression (SMLLR) and EigenVoices-based technique (EV) to adapt the Gaussian means of the speaker independant models for a new speaker. The experiments were evaluated using the speech recognition engine ESPERE on the data of the corpus Resource Management. They show that all of the proposed methods can improve the performances of an automatic speech recognition system (ASRS) in supervised batch adaptation as efficiently as SMLLR and EigenVoices-based techniques whatever the amount of adaptation data is available. For an unsupervised incremental adaptation, only the approach SMLLR+SEV gives the best results.

Details

Database :
OpenAIRE
Journal :
2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).
Accession number :
edsair.doi.dedup.....b94de2fc5fa3f3119d6ff1370805c9e5
Full Text :
https://doi.org/10.1109/icassp.2003.1198847