Back to Search Start Over

Investigation on MWCNT-epoxy films at high CPVC for conductive electrodes coating

Authors :
Giuseppe Di Florio
Simone Visigalli
Andrea Turolla
Gonzalo García Fuentes
Cristina Diaz Jiménez
Roberto Canziani
Paolo Gronchi
Source :
SN Applied Sciences. 1
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

Incineration units for sewage sludge disposal require a 40% minimum of dry solid content to obtain an ignitable material for energy recovery. Electro-dewatering (EDW) process could be useful to accelerate and improve the removal of adsorbed/interstitial water from sludge, but this application must be as cheap as possible and, further, the use of noble metals as electrodes to avoid corrosion is not appropriate. With these constraints, the use of an organic conductive coating could be suitable to protect low carbon steel electrodes. In this work, we investigated the chemical, electrical and mechanical characteristics of coatings obtained with epoxy resin/multi-walled carbon nanotube (MWCNT) composites, with the aim to design a protective film. The filler/resin ratio is the main parameter to be considered because at high ratio the electrical conductivity increases and, on the reverse, the physical and mechanical performances worsen. Specimens with different concentrations of carbonaceous filler have been produced and their characteristics have been discussed in relation to the critical pigment volume concentration (CPVC) and to the percolation limit.

Details

ISSN :
25233971 and 25233963
Volume :
1
Database :
OpenAIRE
Journal :
SN Applied Sciences
Accession number :
edsair.doi.dedup.....b93b45166ffe40fc009d44b0a4a29e2a