Back to Search Start Over

The genetics of obligate parthenogenesis in an aphid species and its consequences for the maintenance of alternative reproductive modes

The genetics of obligate parthenogenesis in an aphid species and its consequences for the maintenance of alternative reproductive modes

Authors :
Jean-Christophe Simon
Frédérique Mahéo
Jean Francois Le Gallic
Charles-Antoine Dedryver
F. Dedryver
Institut de Génétique, Environnement et Protection des Plantes (IGEPP)
Institut National de la Recherche Agronomique (INRA)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
AGROCAMPUS OUEST-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Recherche Agronomique (INRA)
Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-AGROCAMPUS OUEST
Source :
Heredity, Heredity, Nature Publishing Group, 2013, 110 (1), pp.39-45. ⟨10.1038/hdy.2012.57⟩, Heredity, 2013, 110 (1), pp.39-45. ⟨10.1038/hdy.2012.57⟩
Publication Year :
2012

Abstract

International audience; Although loss of sex is widespread among metazoans, the genetic mechanisms underlying the transition to asexuality are poorly understood. Aphids are good models to address this issue because they frequently show reproductive-mode variation at the species level, involving cyclical parthenogens (CP) that reproduce sexually once a year and obligate parthenogens (OP) that reproduce asexually all year round. Here, we explore the genetic basis of OP in the cereal aphid Sitobion avenae by crossing several genotypes with contrasting reproductive modes and then characterising the reproductive phenotypes of F1 and F2 offspring. The analysis of phenotypic variation in F1 and F2 progenies suggests that at least two autosomal loci control OP in S. avenae. First, the transition to asexuality seems to depend on a single recessive locus, because the offspring from self-crossed cyclical parthenogenetic genotypes contain either 0 or 25% OP. Second, as we observed OP in the F1 progenies from crosses between CP and OP, and some CP in the offspring from outcrossed OP, a dominant 'suppressor' gene may also be involved, being inactive when in a recessive homozygous state in CP; this is the most parsimonious explanation for these results. This oligogenic inheritance of OP in S. avenae appears to be an efficient genetic system to generate new OP genotypes continually. It also allows asexuality-inducing alleles to be protected locally during harsh winters when extreme frost kills most OP, and then to spread very quickly after winter. Heredity (2013) 110, 39-45; doi:10.1038/hdy.2012.57; published online 19 September 2012

Details

ISSN :
13652540 and 0018067X
Volume :
110
Issue :
1
Database :
OpenAIRE
Journal :
Heredity
Accession number :
edsair.doi.dedup.....b9206f0722a29f9352b85247bd42bac4
Full Text :
https://doi.org/10.1038/hdy.2012.57⟩