Back to Search Start Over

LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons

Authors :
Seunghee Lee
Bora Lee
Soo Kyung Lee
Kaumudi Joshi
Jae Woon Lee
Source :
Developmental Biology. (2):508-509
Publisher :
Published by Elsevier Inc.

Abstract

Summary Multiple excitatory and inhibitory interneurons form the motor circuit with motor neurons in the ventral spinal cord. Notch signaling initiates the diversification of immature V2-interneurons into excitatory V2a-interneurons and inhibitory V2b-interneurons. Here, we provide a transcriptional regulatory mechanism underlying their balanced production. LIM-only protein LMO4 controls this binary cell fate choice by regulating the activity of V2a- and V2b-specific LIM complexes inversely. In the spinal cord, LMO4 induces GABAergic V2b-interneurons in collaboration with SCL and inhibits Lhx3 from generating glutamatergic V2a-interneuons. In LMO4;SCL compound mutant embryos, V2a-interneurons increase markedly at the expense of V2b-interneurons. We further demonstrate that LMO4 nucleates the assembly of a novel LIM-complex containing SCL, Gata2, and NLI. This complex activates specific enhancers in V2b-genes consisting of binding sites for SCL and Gata2, thereby promoting V2b-interneuron fate. Thus, LMO4 plays essential roles in directing a balanced generation of inhibitory and excitatory neurons in the ventral spinal cord.

Details

Language :
English
ISSN :
00121606
Issue :
2
Database :
OpenAIRE
Journal :
Developmental Biology
Accession number :
edsair.doi.dedup.....b9122d7cafa1349b379eb55a046008e9
Full Text :
https://doi.org/10.1016/j.ydbio.2009.05.453