Back to Search
Start Over
Split application of reduced nitrogen rate improves nitrogen uptake and use efficiency in sweetpotato
- Source :
- Scientific Reports, Vol 9, Iss 1, Pp 1-11 (2019), Scientific Reports
- Publication Year :
- 2019
- Publisher :
- Nature Publishing Group, 2019.
-
Abstract
- Splitting nitrogen (N) application is beneficial for enhancing sweetpotato growth and promoting optimum yields under reduced N rates; however, studies concerning how split N can affect sweetpotato N dynamics and utilization are limited. Field experiments were conducted from 2015 to 2016 to determine how split N application affects sweetpotato N uptake and N use efficiency (NUE) under a reduced N rate. Two cultivars (Xushu 22 and Shangshu 19) were planted under four N treatments, a conventional basal application of 100 kg N ha−1 (100:0), a basal application of 80 kg N ha−1 (80:0), two equal split applications of 80 kg N ha−1 (basal and 35 days after transplanting, 40:40) and a N omission treatment (N0). Data from two years revealed that sweetpotato yields decreased at a reduced 20% N rate with a basal application (80:0); however, the reduced 20% N rate with a split application (40:40) significantly increased the yield by 16.6–19.0%. Although the 80:0 treatment decreased sweetpotato N uptake, the 40:40 treatment increased the N uptake by increasing the N uptake rate and prolonging the duration of the fast N uptake phase. In comparison to the basal application, the split N application used N more efficiently, showing consistently higher levels of agronomic use efficiency, recovery efficiency, physiological efficiency and partial factor productivity. NUEs under split N improved due to increased N uptake during the middle and late growth stages and a higher N partition ratio to the storage root. The above results indicate that split N application provides better N for crop developmental stages and is recommended as an alternative approach to simultaneously increasing storage root yield and NUE under a reduced N rate in sweetpotato production in China.
- Subjects :
- 0106 biological sciences
Solid Earth sciences
Nitrogen
chemistry.chemical_element
lcsh:Medicine
01 natural sciences
Article
Animal science
Reduced nitrogen
Transplanting
Cultivar
Uptake rate
Ipomoea batatas
Fertilizers
lcsh:Science
Nitrogen cycle
Multidisciplinary
Chemistry
lcsh:R
04 agricultural and veterinary sciences
Crop Production
N application
040103 agronomy & agriculture
0401 agriculture, forestry, and fisheries
lcsh:Q
Plant sciences
Plant Shoots
010606 plant biology & botany
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 9
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Scientific Reports
- Accession number :
- edsair.doi.dedup.....b8fe05407649d88fd01657af35fe669e
- Full Text :
- https://doi.org/10.1038/s41598-019-50532-2