Back to Search Start Over

Critically coupled Fabry–Perot cavity with high signal contrast for refractive index sensing

Authors :
Gyeong Cheol Park
Kwangwook Park
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-10 (2021), Scientific Reports
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Perfect absorption at a resonance wavelength and extremely low absorption at the wavelength range of off-resonance in a one-port optical cavity is required for refractive index (RI) sensing with high signal contrast. Here, we propose and analyze an absorption-enhanced Fabry–Perot (MAFP) cavity based on a critical coupling condition in a near-infrared wavelength range. For a one-port cavity, a thick bottom Au is used as a mirror and an absorber. To achieve the critical coupling condition, a top dielectric metasurface is employed and tailored to balance the radiation coupling and the absorption coupling rates, and the one-port cavity is theoretically analyzed using temporal coupled-mode theory. We investigate two types of MAFP structures for gas and liquid. The gas MAFP cavity shows a sensitivity of ~ 1388 nm/RIU and a full-width at half-maximum of less than 0.7 nm. This MAFP cavity resolves the RI change of 5 × 10−4 with a reflectance signal margin of 50% and achieves a signal contrast of ~ 100%. The liquid MAFP cavity shows a sensitivity of ~ 996 nm/RIU when RI of liquid changes from 1.30 to 1.38. With tailoring the period of the metasurface maintaining its thickness, a signal contrast of ~ 100% is achieved for each specific RI range.

Details

ISSN :
20452322
Volume :
11
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....b8ddc44e1eaec8b01b084fcd4a49dff9