Back to Search Start Over

Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2

Authors :
Alessandra Lillo
Erik Limpens
René Geurts
Kerstin Kaufmann
Muhammad Jamil
Tatsiana Charnikhova
Wouter Kohlen
Marijke Hartog
Harro J. Bouwmeester
Wei Liu
Rik Op den Camp
Wei-Cai Yang
Ton Bisseling
Guido J. E. J. Hooiveld
Cezary Smaczniak
Sergey Ivanov
Source :
The Plant Cell, 23(10), 3853-3865, The Plant Cell 23 (2011) 10
Publication Year :
2011
Publisher :
Oxford University Press (OUP), 2011.

Abstract

Legume GRAS (GAI, RGA, SCR)-type transcription factors NODULATION SIGNALING PATHWAY1 (NSP1) and NSP2 are essential for rhizobium Nod factor-induced nodulation. Both proteins are considered to be Nod factor response factors regulating gene expression after symbiotic signaling. However, legume NSP1 and NSP2 can be functionally replaced by nonlegume orthologs, including rice (Oryza sativa) NSP1 and NSP2, indicating that both proteins are functionally conserved in higher plants. Here, we show that NSP1 and NSP2 are indispensable for strigolactone (SL) biosynthesis in the legume Medicago truncatula and in rice. Mutant nsp1 plants do not produce SLs, whereas in M. truncatula, NSP2 is essential for conversion of orobanchol into didehydro-orobanchol, which is the main SL produced by this species. The disturbed SL biosynthesis in nsp1 nsp2 mutant backgrounds correlates with reduced expression of DWARF27, a gene essential for SL biosynthesis. Rice and M. truncatula represent distinct phylogenetic lineages that split approximately 150 million years ago. Therefore, we conclude that regulation of SL biosynthesis by NSP1 and NSP2 is an ancestral function conserved in higher plants. NSP1 and NSP2 are single-copy genes in legumes, which implies that both proteins fulfill dual regulatory functions to control downstream targets after rhizobium-induced signaling as well as SL biosynthesis in nonsymbiotic conditions.

Details

ISSN :
1532298X and 10404651
Volume :
23
Database :
OpenAIRE
Journal :
The Plant Cell
Accession number :
edsair.doi.dedup.....b8dab40dc9c4abfed167f57e0042741d