Back to Search Start Over

Learning Spatially Varying Pixel Exposures for Motion Deblurring

Authors :
Cindy M. Nguyen
Julien N. P. Martel
Gordon Wetzstein
Publication Year :
2022

Abstract

Computationally removing the motion blur introduced by camera shake or object motion in a captured image remains a challenging task in computational photography. Deblurring methods are often limited by the fixed global exposure time of the image capture process. The post-processing algorithm either must deblur a longer exposure that contains relatively little noise or denoise a short exposure that intentionally removes the opportunity for blur at the cost of increased noise. We present a novel approach of leveraging spatially varying pixel exposures for motion deblurring using next-generation focal-plane sensor--processors along with an end-to-end design of these exposures and a machine learning--based motion-deblurring framework. We demonstrate in simulation and a physical prototype that learned spatially varying pixel exposures (L-SVPE) can successfully deblur scenes while recovering high frequency detail. Our work illustrates the promising role that focal-plane sensor--processors can play in the future of computational imaging.<br />Project page with code: https://ccnguyen.github.io/lsvpe/

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....b8a68a77f7418cd86a48135e1aeaa808