Back to Search Start Over

Formation of the terrestrial planets in the solar system around 1 au via radial concentration of planetesimals

Authors :
Alessandro Morbidelli
Takeru K. Suzuki
Masahiro Ogihara
Eiichiro Kokubo
National Astronomical Observatory of Japan (NAOJ)
Joseph Louis LAGRANGE (LAGRANGE)
Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2018, 612, pp.L5. ⟨10.1051/0004-6361/201832654⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

No planets exist inside the orbit of Mercury and the terrestrial planets of the solar system exhibit a localized configuration. According to thermal structure calculation of protoplanetary disks, a silicate condensation line (~ 1300 K) is located around 0.1 au from the Sun except for the early phase of disk evolution, and planetesimals could have formed inside the orbit of Mercury. A recent study of disk evolution that includes magnetically driven disk winds showed that the gas disk obtains a positive surface density slope inside ~ 1 au from the central star. In a region with positive midplane pressure gradient, planetesimals undergo outward radial drift. We investigate the radial drift of planetesimals and type I migration of planetary embryos in a disk that viscously evolves with magnetically driven disk winds. We show a case in which no planets remain in the close-in region. Radial drifts of planetesimals are simulated using a recent disk evolution model that includes effects of disk winds. The late stage of planet formation is also examined by performing N-body simulations of planetary embryos. We demonstrate that in the middle stage of disk evolution, planetesimals can undergo convergent radial drift in a magnetorotational instability (MRI)-inactive disk, in which the pressure maximum is created, and accumulate in a narrow ring-like region with an inner edge at ~ 0.7 au from the Sun. We also show that planetary embryos that may grow from the narrow planetesimal ring do not exhibit significant type I migration in the late stage of disk evolution. The origin of the localized configuration of the terrestrial planets of the solar system, in particular the deficit of close-in planets, can be explained by the convergent radial drift of planetesimals in disks with a positive pressure gradient in the close-in region.<br />5 pages, 4 figures, accepted for publication in A&A Letters

Details

Language :
English
ISSN :
00046361
Database :
OpenAIRE
Journal :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2018, 612, pp.L5. ⟨10.1051/0004-6361/201832654⟩
Accession number :
edsair.doi.dedup.....b89995bc83d57cb0aed46a54475c2ac6
Full Text :
https://doi.org/10.1051/0004-6361/201832654⟩