Back to Search Start Over

Efficiently combining α CenA multi-epoch high-contrast imaging data. Application of K-Stacker to the 80 hours NEAR campaign

Authors :
H. Le Coroller
M. Nowak
K. Wagner
M. Kasper
G. Chauvin
C. Desgrange
S. Conseil
G. Jakob
U. Käufl
S. Leveratto
E. Pantin
R. Siebenmorgen
R. Arsenault
Laboratoire d'Astrophysique de Marseille (LAM)
Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Observatoire de la Côte d'Azur (OCA)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Institut de Planétologie et d'Astrophysique de Grenoble (IPAG)
Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Source :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, 2022, 667, ⟨10.1051/0004-6361/202243576⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

Keplerian-Stacker is an algorithm able to combine multiple observations acquired at different epochs taking into account the orbital motion of a potential planet present in the images to boost the ultimate detection limit. In 2019, a total of 100 hours of observation were allocated to VLT VISIR-NEAR, a collaboration between ESO and Breakthrough Initiatives, to search for low mass planets in the habitable zone of the Alpha Cen AB binary system. A weak signal (S/N = 3) was reported around Alpha Cen A, at a separation of 1.1 a.u. which corresponds to the habitable zone. We have re-analysed the NEAR data using K-Stacker. This algorithm is a brute-force method able to find planets in time series of observations and to constrain their orbital parameters, even if they remain undetected in a single epoch. We scanned a total of about 3.5e+5 independent orbits, among which about 15 % correspond to fast moving orbits on which planets cannot be detected without taking into account the orbital motion. We find only a single planet candidate, which matches the C1 detection reported in Wagner et al. 2021. Despite the significant amount of time spent on this target, the orbit of this candidate remains poorly constrained due to these observations being closely distributed in 34 days. We argue that future single-target deep surveys would benefit from a K-Stacker based strategy, where the observations would be split over a significant part of the expected orbital period to better constrain the orbital parameters. This application of K-Stacker on high contrast imaging data in the mid-infrared demonstrates the capability of this algorithm to aid in the search for Earth-like planets in the habitable zone of the nearest stars with future instruments of the E-ELT such as METIS.<br />9 pages, 11 figures, K-Stacker github link

Details

Language :
English
ISSN :
00046361
Database :
OpenAIRE
Journal :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, 2022, 667, ⟨10.1051/0004-6361/202243576⟩
Accession number :
edsair.doi.dedup.....b888ee5726281916744ac588ef0c297f
Full Text :
https://doi.org/10.1051/0004-6361/202243576⟩