Back to Search
Start Over
Constructing Metrics for Evaluating Multi-Relational Association Rules in the Semantic Web from Metrics for Scoring Association Rules
- Source :
- RIVF, IEEE-RIVF 2019-International Conference on Computing and Communication Technologies, IEEE-RIVF 2019-International Conference on Computing and Communication Technologies, Mar 2019, Da Nang, Vietnam. pp.65-70
- Publication Year :
- 2019
- Publisher :
- IEEE, 2019.
-
Abstract
- International audience; We propose a method to construct asymmetric metrics for evaluating the quality of multi-relational association rules coded in the form of SWRL rules. These metrics are derived from metrics for scoring association rules. We use each constructed metric as a fitness function for evolutionary inductive programming employed to discover hidden knowledge patterns (represented in SWRL) from assertional data of ontological knowledge bases. This new knowledge can be integrated easily within the ontology to enrich it. In addition, we also carry out a search for the best metric to score candidate multi-relational association rules in the evolutionary approach by experiment. We performed experiments on three publicly available ontologies validating the performances of our approach and comparing them with the main state-of-the-art systems.
- Subjects :
- Association rule learning
business.industry
Computer science
Evolutionary algorithm
Ontology (information science)
computer.software_genre
Description Logics
Inductive programming
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Knowledge-based systems
Description logic
Metric (mathematics)
Pattern Discovery
Evolutionary Algorithms
Artificial intelligence
business
Semantic Web
computer
Natural language processing
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF)
- Accession number :
- edsair.doi.dedup.....b876c6b1820e7bffd4e72d61136ef226
- Full Text :
- https://doi.org/10.1109/rivf.2019.8713682