Back to Search
Start Over
Cellular automata and bootstrap percolation
- Source :
- Theoretical Computer Science, Theoretical Computer Science, 2022, 924, pp.34-45. ⟨10.1016/j.tcs.2022.04.015⟩
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- We study qualitative properties of two-dimensional freezing cellular automata with a binary state set initialized on a random configuration. If the automaton is also monotone, the setting is equivalent to bootstrap percolation. We explore the extent to which monotonicity constrains the possible asymptotic dynamics by proving two results that do not hold in the subclass of monotone automata. First, it is undecidable whether the automaton almost surely fills the space when initialized on a Bernoulli random configuration with density $p$, for some/all $0 < p < 1$. Second, there exists an automaton whose space-filling property depends on $p$ in a non-monotone way.<br />18 pages, 3 figures
- Subjects :
- [INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]
FOS: Computer and information sciences
Discrete Mathematics (cs.DM)
General Computer Science
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
Probability (math.PR)
Dynamical Systems (math.DS)
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Nonlinear Sciences::Cellular Automata and Lattice Gases
Theoretical Computer Science
37B15, 68Q80, 60K35
FOS: Mathematics
Mathematics - Dynamical Systems
Computer Science::Formal Languages and Automata Theory
Mathematics - Probability
Computer Science - Discrete Mathematics
Subjects
Details
- ISSN :
- 03043975 and 18792294
- Volume :
- 924
- Database :
- OpenAIRE
- Journal :
- Theoretical Computer Science
- Accession number :
- edsair.doi.dedup.....b854eed479b92a30702e43ad4566916d
- Full Text :
- https://doi.org/10.1016/j.tcs.2022.04.015