Back to Search Start Over

Cellular automata and bootstrap percolation

Authors :
Ville Salo
Guillaume Theyssier
Ilkka Törmä
Institut de Mathématiques de Marseille (I2M)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Theoretical Computer Science, Theoretical Computer Science, 2022, 924, pp.34-45. ⟨10.1016/j.tcs.2022.04.015⟩
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

We study qualitative properties of two-dimensional freezing cellular automata with a binary state set initialized on a random configuration. If the automaton is also monotone, the setting is equivalent to bootstrap percolation. We explore the extent to which monotonicity constrains the possible asymptotic dynamics by proving two results that do not hold in the subclass of monotone automata. First, it is undecidable whether the automaton almost surely fills the space when initialized on a Bernoulli random configuration with density $p$, for some/all $0 < p < 1$. Second, there exists an automaton whose space-filling property depends on $p$ in a non-monotone way.<br />18 pages, 3 figures

Details

ISSN :
03043975 and 18792294
Volume :
924
Database :
OpenAIRE
Journal :
Theoretical Computer Science
Accession number :
edsair.doi.dedup.....b854eed479b92a30702e43ad4566916d
Full Text :
https://doi.org/10.1016/j.tcs.2022.04.015