Back to Search Start Over

Norm convergence of partial sums of $H^1$ functions

Authors :
J. Xiong
J. D. McNeal
Publication Year :
2018
Publisher :
arXiv, 2018.

Abstract

A classical observation of Riesz says that truncations of a general $\sum_{n=0}^\infty a_n z^n$ in the Hardy space $H^1$ do not converge in $H^1$. A substitute positive result is proved: these partial sums always converge in the Bergman norm $A^1$. The result is extended to complete Reinhardt domains in $\C^n$. A new proof of the failure of $H^1$ convergence is also given.<br />Comment: Polynomial density argument added. Several typos corrected

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....b8390fe68b9d2477e92e229c67bd373e
Full Text :
https://doi.org/10.48550/arxiv.1803.10822