Back to Search
Start Over
The UKC2 regional coupled environmental prediction system
- Source :
- Geoscientific Model Development, Vol 11, Pp 1-42 (2018), CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Publication Year :
- 2018
-
Abstract
- It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere-land-ocean-wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period highlight the potential benefits of coupling between environmental model components. Results also illustrate that the coupling itself is not sufficient to address all known model issues. Priorities for future development of the UK Environmental Prediction framework and component systems are discussed. Fil: Lewis, Huw W.. Exeter Met Office; Reino Unido Fil: Manuel Castillo Sanchez, Juan. Exeter Met Office; Reino Unido Fil: Graham, Jennifer. Exeter Met Office; Reino Unido Fil: Saulter, Andrew. Exeter Met Office; Reino Unido Fil: Bornemann, Jorge. Exeter Met Office; Reino Unido Fil: Arnold, Alex. Exeter Met Office; Reino Unido Fil: Fallmann, Joachim. Exeter Met Office; Reino Unido Fil: Harris, Chris. Exeter Met Office; Reino Unido Fil: Pearson, David. Exeter Met Office; Reino Unido Fil: Ramsdale, Steven. Exeter Met Office; Reino Unido Fil: Martínez De La Torre, Alberto. Centre For Ecology & Hydrology; Reino Unido Fil: Bricheno, Lucy. National Oceanography Centre; Reino Unido Fil: Blyth, Eleanor. Centre For Ecology & Hydrology; Reino Unido Fil: Bell, Victoria A.. Centre For Ecology & Hydrology; Reino Unido Fil: Davies, Helen. Centre For Ecology & Hydrology; Reino Unido Fil: Marthews, Toby R.. Centre For Ecology & Hydrology; Reino Unido Fil: O'Neill, Clare. Exeter Met Office; Reino Unido Fil: Rumbold, Heather. Exeter Met Office; Reino Unido Fil: O'Dea, Enda. Exeter Met Office; Reino Unido Fil: Brereton, Ashley. National Oceanography Centre; Reino Unido Fil: Guihou, Karen. National Oceanography Centre; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hines, Adrian. Exeter Met Office; Reino Unido Fil: Butenschon, Momme. Plymouth Marine Laboratory; Reino Unido Fil: Dadson, Simon J.. University of Oxford; Reino Unido Fil: Palmer, Tamzin. Exeter Met Office; Reino Unido Fil: Holt, Jason. National Oceanography Centre; Reino Unido Fil: Reynard, Nick. Centre For Ecology & Hydrology; Reino Unido Fil: Best, Martin. Exeter Met Office; Reino Unido Fil: Edwards, John. Exeter Met Office; Reino Unido Fil: Siddorn, John. Exeter Met Office; Reino Unido
- Subjects :
- Engineering
010504 meteorology & atmospheric sciences
Meteorology
0208 environmental biotechnology
02 engineering and technology
01 natural sciences
Modelling
purl.org/becyt/ford/1 [https]
purl.org/becyt/ford/1.5 [https]
Meteorology and Climatology
Natural hazard
Component (UML)
Wind wave
Duration (project management)
0105 earth and related environmental sciences
business.industry
lcsh:QE1-996.5
Unified Model
020801 environmental engineering
Earth system science
lcsh:Geology
Sea surface temperature
Systems engineering
Prediction
business
Significant wave height
Subjects
Details
- ISSN :
- 19919603 and 1991959X
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Geoscientific Model Development
- Accession number :
- edsair.doi.dedup.....b8057f339db77c2b57357c39f943fba7