Back to Search Start Over

Sequence impedances of land single-core insulated cables: Direct formulae and multiconductor cell analyses compared with measurements

Authors :
Michele Poli
Sebastian Dambone Sessa
Francesco Sanniti
Roberto Benato
Source :
Energies, Vol 13, Iss 5, p 1084 (2020), Energies, Volume 13, Issue 5
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

The paper deals with the sequence impedances (positive/negative and zero sequences) of high- and extra-high-voltage land single-core insulated cables. In particular, it presents the comparisons between sequence impedance measurements and computations. The computations of the sequence impedances are carried out by means of the most important international normative and council references (IEC/Cigr&eacute<br />) and of multiconductor cell analysis which is a consolidated and powerful tool developed by University of Padova in order to analyse power frequency regimes of multiconductor asymmetric power systems. The comparisons are presented with reference to four high- and extra-high voltage insulated cables, even if the available ones are much higher: however, the conclusions derived from these four reference cases are general and can be useful for transmission system operators and for power electric system engineers involved in insulated cables. The paper demonstrates, for the first time in technical literature, that direct formulae cannot correctly evaluate the sequence impedances of installed single-core land cable systems. Extensive on-field measurement campaigns have served to this purpose.

Details

Language :
English
Database :
OpenAIRE
Journal :
Energies, Vol 13, Iss 5, p 1084 (2020), Energies, Volume 13, Issue 5
Accession number :
edsair.doi.dedup.....b8027e227c750536f3a27f8ff411f17c