Back to Search
Start Over
Fine-Tuning Approach for Segmentation of Gliomas in Brain Magnetic Resonance Images with a Machine Learning Method to Normalize Image Differences among Facilities
- Source :
- Cancers, Vol 13, Iss 1415, p 1415 (2021), Cancers, Volume 13, Issue 6
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- Machine learning models for automated magnetic resonance image segmentation may be useful in aiding glioma detection. However, the image differences among facilities cause performance degradation and impede detection. This study proposes a method to solve this issue. We used the data from the Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) and the Japanese cohort (JC) datasets. Three models for tumor segmentation are developed. In our methodology, the BraTS and JC models are trained on the BraTS and JC datasets, respectively, whereas the fine-tuning models are developed from the BraTS model and fine-tuned using the JC dataset. Our results show that the Dice coefficient score of the JC model for the test portion of the JC dataset was 0.779 ± 0.137, whereas that of the BraTS model was lower (0.717 ± 0.207). The mean Dice coefficient score of the fine-tuning model was 0.769 ± 0.138. There was a significant difference between the BraTS and JC models (p &lt<br />0.0001) and the BraTS and fine-tuning models (p = 0.002)<br />however, no significant difference between the JC and fine-tuning models (p = 0.673). As our fine-tuning method requires fewer than 20 cases, this method is useful even in a facility where the number of glioma cases is small.
- Subjects :
- 0301 basic medicine
Cancer Research
Computer science
Machine learning
computer.software_genre
lcsh:RC254-282
Article
Image (mathematics)
03 medical and health sciences
0302 clinical medicine
Sørensen–Dice coefficient
glioma
Segmentation
Brain magnetic resonance imaging
MR images
business.industry
Deep learning
Significant difference
deep learning
Image segmentation
lcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens
030104 developmental biology
machine learning
Oncology
030220 oncology & carcinogenesis
Artificial intelligence
business
computer
fine-tuning
Tumor segmentation
Subjects
Details
- Language :
- English
- ISSN :
- 20726694
- Volume :
- 13
- Issue :
- 1415
- Database :
- OpenAIRE
- Journal :
- Cancers
- Accession number :
- edsair.doi.dedup.....b7fd3c9a3515ce166786d68f6123e033