Back to Search Start Over

An Axially Variant Kernel Imaging Model Applied to Ultrasound Image Reconstruction

Authors :
Sergiy A. Vorobyov
Denis Kouame
Mihai I. Florea
Adrian Basarab
Aalto University
CoMputational imagINg anD viSion (IRIT-MINDS)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Université Toulouse III - Paul Sabatier (UT3)
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université Toulouse 1 Capitole - UT1 (FRANCE)
Aalto University (FINLAND)
Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Source :
IEEE Signal Processing Letters, IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2018, 25 (7), pp.961-965. ⟨10.1109/LSP.2018.2824764⟩
Publication Year :
2018
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2018.

Abstract

International audience; Existing ultrasound deconvolution approaches unrealistically assume, primarily for computational reasons, that the convolution model relies on a spatially invariant kernel and circulant boundary conditions. We discard both restrictions and introduce an image formation model applicable to ultrasound imaging and deconvolution based on an axially varying kernel, which accounts for arbitrary boundary conditions. Our model has the same computational complexity as the one employing spatially invariant convolution and has negligible memory requirements. To accommodate the state-of-the-art deconvolution approaches when applied to a variety of inverse problem formulations, we also provide an equally efficient adjoint expression for our model. Simulation results confirm the tractability of our model for the deconvolution of large images. Moreover, in terms of accuracy metrics, the quality of reconstruction using our model is superior to that obtained using spatially invariant convolution.

Details

ISSN :
15582361 and 10709908
Volume :
25
Database :
OpenAIRE
Journal :
IEEE Signal Processing Letters
Accession number :
edsair.doi.dedup.....b7fa2ab5c8a90136585084941094db76
Full Text :
https://doi.org/10.1109/lsp.2018.2824764