Back to Search
Start Over
'Button and Buttonhole' Supramolecular Structure Enables the Self-Healing Behaviors of Functionalized Poly(ether sulfone) Membranes for Osmotic Power Generation
- Source :
- ACS Applied Materials & Interfaces. 11:42322-42329
- Publication Year :
- 2019
- Publisher :
- American Chemical Society (ACS), 2019.
-
Abstract
- Osmotic power generation has emerged as an advanced technology toward water-energy nexus to tackle global water pollution. It provides a sustainable use of salinity gradient from water resources yet encounters major obstacles caused by pressure-retarded osmosis (PRO) membrane fouling. Although membranes with good antifouling properties are widely studied, their antifouling functions are readily lost when scratches or detachments occur through physical damage during operation and chemical degradation by water and corrosive foulants. Consequently, it is important to develop antifouling membranes with autonomous self-healing capabilities. Herein, self-healable functionalized poly(ether sulfone) (PES) antifouling membranes have been fabricated via the sequential conjugation of the zwitterionic random copolymer [poly(1-(1-(1-adamantylcarbonyloxy)methyl)-3-vinylimidazolium bromide-co-1-(3-sulfopropyl)-3-vinylimidazolium-co-vinylamine)] (P(ADVI-co-SBVI-co-VA), abbreviated as PASV copolymer) and linear cyclodextrin polymer (LPCD) on polydopamine-preactivated PES supports. The self-healing behaviors rely on the judiciously designed "button-and-buttonhole" supramolecular network. Specifically, β-cyclodextrins in LPCD and adamantines in PASV act as "buttonholes" and "buttons", respectively. Under physical and chemical damages, the β-cyclodextrin "buttonhole" may sacrificially detach from the adamantine "button" of PASV but then recap another adamantine to restore the protective function. The antifouling and self-healing traits of as-functionalized PES-g-PASV-LPCD membranes were demonstrated by the superior antiprotein behaviors and improved antimicrobial performances on both nonaged and aged samples. In the PRO process, the modified membranes were effective in mitigating organic fouling and exhibited higher power density (79% of the initial value) than the nonmodified ones (47% of the initial value) in municipal wastewater testing. The strategy for engineering inherently healable and antifouling membranes paves a new pathway for the development of sustainable membranes for osmotic power production.
- Subjects :
- Materials science
Fouling
Membrane fouling
Pressure-retarded osmosis
02 engineering and technology
010402 general chemistry
021001 nanoscience & nanotechnology
Osmosis
01 natural sciences
0104 chemical sciences
Biofouling
Membrane
Chemical engineering
Self-healing
Osmotic power
General Materials Science
0210 nano-technology
Subjects
Details
- ISSN :
- 19448252 and 19448244
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- ACS Applied Materials & Interfaces
- Accession number :
- edsair.doi.dedup.....b7edbeb897d233ee4961b91e6aef4afb