Back to Search
Start Over
Parameter dependent finite element analysis for ferronematics solutions
- Publication Year :
- 2021
-
Abstract
- This paper focuses on the analysis of a free energy functional, that models a dilute suspension of magnetic nanoparticles in a two-dimensional nematic well. The {\it first part} of the article is devoted to the asymptotic analysis of global energy minimizers in the limit of vanishing elastic constant, $\ell \rightarrow 0$ where the re-scaled elastic constant $\ell$ is inversely proportional to the domain area. The first results concern the strong $H^1$-convergence and a $\ell$-independent $H^2$-bound for the global minimizers on smooth bounded 2D domains, with smooth boundary and topologically trivial Dirichlet conditions. The {\it second part} focuses on the discrete approximation of regular solutions of the corresponding non-linear system of partial differential equations with cubic non-linearity and non-homogeneous Dirichlet boundary conditions. We establish (i) the existence and local uniqueness of the discrete solutions using fixed point argument, (ii) a best approximation result in energy norm, (iii) error estimates in the energy and $L^2$ norms with $\ell $- discretization parameter dependency for the conforming finite element method. Finally, the theoretical results are complemented by numerical experiments on the discrete solution profiles, the numerical convergence rates that corroborates the theoretical estimates, followed by plots that illustrate the dependence of the discretization parameter on $\ell$.<br />Comment: 36 pages, 37 figures
- Subjects :
- 65N30, 35J60, 35J15
Asymptotic analysis
Partial differential equation
Discretization
Dirichlet conditions
Mathematical analysis
Boundary (topology)
Numerical Analysis (math.NA)
Finite element method
Computational Mathematics
symbols.namesake
Computational Theory and Mathematics
Modeling and Simulation
Dirichlet boundary condition
symbols
FOS: Mathematics
Mathematics - Numerical Analysis
QA
Energy functional
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 08981221
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....b7e7e2cf1b298087b3311cac1a870de7