Back to Search Start Over

Extracting non-Abelian quantum metric tensor and its related Chern numbers

Authors :
Hai-Tao Ding
Yan-Qing Zhu
Peng He
Yu-Guo Liu
Jian-Te Wang
Dan-Wei Zhang
Shi-Liang Zhu
Source :
Physical Review A. 105
Publication Year :
2022
Publisher :
American Physical Society (APS), 2022.

Abstract

The complete geometry of quantum states in parameter space is characterized by the quantum geometric tensor, which contains the quantum metric and Berry curvature as the real and imaginary parts, respectively. When the quantum states are degenerate, the quantum metric and Berry curvature take non-Abelian forms. The non-Abelian (Abelian) Berry curvature and Abelian quantum metric have been experimentally measured. However, an experimentally feasible scheme to extract all the components of the non-Abelian quantum metric tensor is still lacking. Here we propose a generic protocol to directly extract the non-Abelian quantum metric tensor in arbitrary degenerate quantum states in any dimensional parameter space, based on measuring the transition probabilities after parameter quenches. Furthermore, we show that the non-Abelian quantum metric can be measured to obtain the real Chern number of a generalized Dirac monopole and the second Chern number of a Yang monopole, which can be simulated in three and five-dimensional parameter space of artificial quantum systems, respectively. We also demonstrate the feasibility of our quench scheme for these two applications with numerical simulations.<br />10 pages, 5 figures

Details

ISSN :
24699934 and 24699926
Volume :
105
Database :
OpenAIRE
Journal :
Physical Review A
Accession number :
edsair.doi.dedup.....b7ba20f41a650c8de8d949e867fffc61