Back to Search Start Over

Incoherent shock waves in long-range optical turbulence

Authors :
Stefano Trillo
Antonio Picozzi
Gang Xu
Daniele Faccio
Josselin Garnier
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 ( PhLAM )
Université de Lille-Centre National de la Recherche Scientifique ( CNRS )
Laboratoire Jacques-Louis Lions ( LJLL )
Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS )
Laboratoire de Probabilités et Modèles Aléatoires ( LPMA )
Heriot-Watt University [Edinburgh] ( HWU )
Engineering Department [Ferrara]
University of Ferrara [Ferrara]
Laboratoire Interdisciplinaire Carnot de Bourgogne ( LICB )
Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS )
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
Heriot-Watt University [Edinburgh] (HWU)
Università degli Studi di Ferrara = University of Ferrara (UniFE)
Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB)
Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Università degli Studi di Ferrara (UniFE)
Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB)
Source :
Physica D: Nonlinear Phenomena, Physica D: Nonlinear Phenomena, Elsevier, 2016, 333 pp.310-322, Physica D: Nonlinear Phenomena, 2016, 333, pp.310-322. ⟨10.1016/j.physd.2016.02.015⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; Considering the nonlinear Schrödinger (NLS) equation as a representative model, we report a unified presentation of different forms of incoherent shock waves that emerge in the long-range interaction regime of a turbulent optical wave system. These incoherent singularities can develop either in the temporal domain through a highly noninstantaneous nonlinear response, or in the spatial domain through a highly nonlocal nonlinearity. In the temporal domain, genuine dispersive shock waves (DSW) develop in the spectral dynamics of the random waves, despite the fact that the causality condition inherent to the response function breaks the Hamiltonian structure of the NLS equation. Such spectral incoherent DSWs are described in detail by a family of singular integro-differential kinetic equations, e.g. Benjamin–Ono equation, which are derived from a nonequilibrium kinetic formulation based on the weak Langmuir turbulence equation. In the spatial domain, the system is shown to exhibit a large scale global collective behavior, so that it is the fluctuating field as a whole that develops a singularity, which is inherently an incoherent object made of random waves. Despite the Hamiltonian structure of the NLS equation, the regularization of such a collective incoherent shock does not require the formation of a DSW — the regularization is shown to occur by means of a different process of coherence degradation at the shock point. We show that the collective incoherent shock is responsible for an original mechanism of spontaneous nucleation of a phase-space hole in the spectrogram dynamics. The robustness of such a phase-space hole is interpreted in the light of incoherent dark soliton states, whose different exact solutions are derived in the framework of the long-range Vlasov formalism.

Details

Language :
English
ISSN :
01672789
Database :
OpenAIRE
Journal :
Physica D: Nonlinear Phenomena, Physica D: Nonlinear Phenomena, Elsevier, 2016, 333 pp.310-322, Physica D: Nonlinear Phenomena, 2016, 333, pp.310-322. ⟨10.1016/j.physd.2016.02.015⟩
Accession number :
edsair.doi.dedup.....b7a9aae6d6124dbf3784ce735d0a56f1
Full Text :
https://doi.org/10.1016/j.physd.2016.02.015⟩