Back to Search Start Over

Prediction of Italian ryegrass (Lolium multiflorum L.) emergence using soil thermal time

Authors :
José Luis González-Andújar
Michelangelo Muzell Trezzi
Fortunato De Bortoli Pagnoncelli Junior
Katia Cristina Dalpiva Hartmann
Helis Marina Salomão
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil)
Universidade Tecnológica Federal do Paraná
Associação Brasileira de Ação a Resistência de Plantas Daninhas aos Herbicidas
CSIC - Instituto de Agricultura Sostenible (IAS)
Source :
Acta Scientiarum. Agronomy; Vol 43 (2021): Publicação contínua; e52152, Acta Scientiarum. Agronomy; v. 43 (2021): Publicação contínua; e52152, Acta Scientiarum. Agronomy, Universidade Estadual de Maringá (UEM), instacron:UEM, Acta Scientiarum. Agronomy, Volume: 43, Article number: e52152, Published: 22 SEP 2021, Digital.CSIC. Repositorio Institucional del CSIC, instname, Acta Scientiarum: Agronomy, Vol 43, Pp e52152-e52152 (2021)
Publication Year :
2021
Publisher :
Universidade Estadual de Maringá, 2021.

Abstract

Italian ryegrass (Lolium multiflorum L.) is a highly competitive weed widely disseminated worldwide that affects both summer and winter crops. The development of predictive emergence models can contribute to optimizing weed management. The aim of this study was to develop and validate an empirical emergence model of Italian ryegrass based on soil thermal time. For model development, cumulative emergence in two locations was obtained, and the model was validated with data collected in an experiment conducted independently. Three commonly used emergence models were compared (Gompertz, Logistic, and Weibull). The relationship between emergence and soil thermal time was described best by the Gompertz model. The Gompertz model predicted Italian ryegrass emergence start at 300 thermal time (TT), reaching 50% emergence at 444 TT, and 90% at 590 TT. Model validation performed well in predicting Italian ryegrass emergence and proved to be efficient at describing its emergence. This is a potential predictive tool for assisting farmers with Italian ryegrass management.<br />The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Universidade Tecnologica Federal do Paraná (UTFPR), Instituto de Agricultura Sostenible Consejo Superior de Investigaciones Científicas (IAS-CSIC) and HRAC-BR (Associação Brasileira de Ação a Resistência de Plantas Daninhas aos Herbicida) for the infrastructure and financial support.

Details

Language :
English
ISSN :
18078621 and 16799275
Database :
OpenAIRE
Journal :
Acta Scientiarum. Agronomy; Vol 43 (2021): Publicação contínua; e52152, Acta Scientiarum. Agronomy; v. 43 (2021): Publicação contínua; e52152, Acta Scientiarum. Agronomy, Universidade Estadual de Maringá (UEM), instacron:UEM, Acta Scientiarum. Agronomy, Volume: 43, Article number: e52152, Published: 22 SEP 2021, Digital.CSIC. Repositorio Institucional del CSIC, instname, Acta Scientiarum: Agronomy, Vol 43, Pp e52152-e52152 (2021)
Accession number :
edsair.doi.dedup.....b79f1819483edede88be45cb9c7582e8